
By Jonathan Corbet
January 9, 2018

THE MARKET DEMANDS OPEN
COMPUTER PROCESSORS

The disclosure of the Meltdown and Spectre vulnerabilities has brought
a new level of attention to the security bugs that can lurk at the hardware
level. Massive amounts of work have gone into improving the (still

poor) security of our software, but all of that is in vain if the hardware gives away the game. The
CPUs that we run in our systems are highly proprietary and have been shown to contain unpleasant
surprises (the Intel management engine, for example). It is thus natural to wonder whether it is time
to make a move to open-source hardware, much like we have done with our software. Such a move
may well be possible, and it would certainly offer some benefits, but it would be no panacea.

Given the complexity of modern CPUs and the fierceness of the market in which they are sold, it
might be surprising to think that they could be developed in an open manner. But there are serious
initiatives working in this area; the idea of an open CPU design is not pure fantasy. A quick look
around turns up several efforts; the following list is necessarily incomplete.

What's out there

Consider, for example, the OpenPOWER effort, which is based on the POWER architecture. It is not
a truly open-source effort, in that one has to join the club to play, but it is an example of making a
processor design available for collaborative development. Products based on the (relatively) open
designs are shipping. OpenPOWER is focused on the high end of the computing spectrum; chips
based on this design are unlikely to appear in your handset or laptop in the near future.

Then, there is OpenSPARC, wherein Sun Microsystems fully opened the designs of the SPARC T1
and T2 processors. A few projects tried to run with these designs, but it's not clear that anybody got
all that far. At this point, the open SPARC designs are a decade old and the future of SPARC in
general is in doubt. Interesting things could maybe happen if Oracle were to release the designs of
current processors, but holding one's breath for that event is probably not the best of ideas.

OpenRISC is a fully open design for a processor aimed at embedded applications; it has one
processor (the OpenRISC 1000) in a complete state. Some commercial versions of the OpenRISC
1000 have been produced, and reference implementations (such as the mor1kx) exist. The Linux
kernel gained support for OpenRISC in the 3.1 release in 2011, and a Debian port showed up in
2014. The Debian work shut down in 2016, though. Activity around the kernel's OpenRISC code
has slowed, though it did get SMP support in 2017. All told, OpenRISC appears to have lost much
of the momentum it once had.

Much of the momentum these days, instead, appears to be associated with the RISC-V architecture.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

1 of 36

This project is primarily focused on the instruction-set architecture (ISA), rather than on specific
implementations, but free hardware designs do exist. Western Digital recently announced that it will
be using RISC-V processors in its storage products, a decision that could lead to the shipment of
RISC-V by the billion. There is a development kit available for those who would like to play with
this processor and a number of designs for cores are available.

Unlike OpenRISC, RISC-V is intended to be applicable to a wide range of use cases. The simple
RISC architecture should be relatively easy to make fast, it is hoped. Meanwhile, for low-end
applications, there is a compressed instruction-stream format intended to reduce both memory and
energy needs. The ISA is designed with the ability for specific implementations to add extensions,
making experimentation easier and facilitating the addition of hardware acceleration techniques.

The Linux support for RISC-V is quite new; indeed, it will only appear once the 4.15 release gets
out the door. The development effort behind it appears to be quite active, and toolchain and library
support are also landing in the appropriate projects. RISC-V seems to have quite a bit of commercial
support behind it — the RISC-V Foundation has a long list of members. It seems likely that this
architecture will continue to progress for some time.

A solution to the hardware problem?

In response to Meltdown and Spectre, the RISC-V Foundation put out a press release promoting the
architecture as a more secure alternative. RISC-V is indeed not vulnerable to those problems by
virtue of not performing any speculative memory accesses. But the Foundation says that RISC-V
has advantages that go beyond a specific vulnerability; the openness of its development model, the
Foundation says, enables the quick incorporation of the best security ideas from a wide range of
developers.

It has become increasingly clear that, while Linux may have won the battle at the kernel level, there
is a whole level of proprietary hardware and software that runs below the kernel that we have no
control over. An open architecture like RISC-V is thus quite appealing; perhaps we can eventually
claw some of that control back. This seems like a dream worth pursuing, but getting there involves
some challenges that must be overcome first.

The first of these, of course, is that while compilers can be had for free, the same is not true of chip
fabrication facilities, especially the expensive fabs needed to create high-end processors. If progress
slows at the silicon level — as some say is already happening — and fabrication services become
more available to small customers, then it may become practical for more of us to experiment with
processor designs. It will never be as easy or as cheap as typing "make", though.

Until then, we're going to remain dependent on others to build our processors for us. That isn't
necessarily bad; almost all of us depend on others to build most of our software for us as well. But a
higher level of trust has to be placed in hardware. Getting reproducible builds working at the
software level is a serious and ongoing challenge; it will be even harder at the hardware level. But
without some way of verifying underlying design of an actual piece of hardware, we'll never really
know if a given chip implements the design that we're told it does.

Nothing about the RISC-V specification mandates that implementation designs must be made

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

2 of 36

public. Even if RISC-V becomes successful in the marketplace, chances are good that the processors
we can actually buy will not come with freely licensed designs. Large customers (those that build
their own custom data centers) may well be able to insist on getting the designs too — or just create
their own — but the rest of us will find ourselves in a rather weaker bargaining position.

Finally, even if we end up with entirely open processors, that will not bring an end to vulnerabilities
at that level. We have a free kernel, but the kernel vulnerabilities come just the same. Open hardware
may give us more confidence in the long term that we can retain control of our systems, but it is
certainly not a magic wand that will wave our problems away.

None of this should prevent us from trying to bring more openness and freedom to the design of our
hardware, though. Once upon a time, creating a free operating system seemed like an
insurmountably difficult task, but we have done it, multiple times over. Moving away from
proprietary hardware designs may be one of our best chances for keeping our freedom; it would be
foolish not to try.

(Log in to post comments)

Is it time for open processors?
Posted Jan 9, 2018 14:55 UTC (Tue) by armijn (subscriber, #3653) [Link]

There is a (somewhat) successful open SPARC implementation (though I am not sure if it is actually
based on OpenSPARC) and that is the LEON, which is used by ESA. That is, of course, a bit of a
niche market.

Is it time for open processors?
Posted Jan 10, 2018 0:21 UTC (Wed) by JanC_ (subscriber, #34940) [Link]

LEON is not based on on the UltraSPARC T1/T2 designs that were releases as "OpenSPARC".
It's a much simpler 32-bit CPU design (SPARC v8).

They were manufactured by Atmel, and are currently being sold by Microchip, e.g.:
http://www.microchip.com/wwwproducts/en/AT697F
http://www.microchip.com/wwwproducts/en/ATF697FF
http://www.microchip.com/wwwproducts/en/AT7913E

Is it time for open processors?
Posted Jan 9, 2018 15:07 UTC (Tue) by jcm (subscriber, #18262) [Link]

The problem with an "open" processor is the cost. It costs over $1.2 Billion to do a ground up 4 year
OoO core of the kind of competitive performance that others have built. And even then, once silicon
is deployed, security issues can still be found. In short, it will *never* happen. You'll get RISC-V
cores like BOOM, you'll see some wonderful IoT designs, but you'll *never* see a high end Xeon-
class core unless some billionaire funds it as a pet project, and keeps investing year after year for
the greater good. And no, none of the major search/cloud vendors are going to go fund this - they
want to make commercial vendors compete.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

3 of 36

More useful would be focusing on how to make existing designs robust, especially against
mitigations. I'm a huge fan of microcode, but its implementation today is very limited. There's a lot
more research that can happen into how to address security in the field.

Is it time for open processors?
Posted Jan 9, 2018 15:15 UTC (Tue) by ejr (subscriber, #51652) [Link]

Don't bet against it quite yet. Plus, existing RISC-V research work done by grad students has
produced accelerators for various problems that are competitive in speed and/or power/operation.

Is it time for open processors?
Posted Jan 9, 2018 15:49 UTC (Tue) by epa (subscriber, #39769) [Link]

Does your figure of $1.2 billion include manufacturing or is it just for the design stage?

Is it time for open processors?
Posted Jan 9, 2018 15:56 UTC (Tue) by pizza (subscriber, #46) [Link]

I think 1.2 billion is a bit high for just R&D, but I can easily see "hundreds of millions" as the
price tag to design (and more importantly, adequately verify!) a modern CPU core. And that's
assuming it's re-using an existing instruction set and hardware platform so you don't have to
bootstrap the rest of the ecosystem around it.

Is it time for open processors?
Posted Jan 9, 2018 23:16 UTC (Tue) by smoogen (subscriber, #97) [Link]

I think the 1.2 billion is the case for getting a system into complete production while facing
the 'realities' of the industry. The design and 'code' of the chipset to run it in an emulator may
only be in the 10->100 million range.. the getting that to be something on silicon starts
adding up quickly. You start running into physical problems (well yes we could do that set of
adds there but the chip burns up and if we space them out we slow down this other
operation). Then you have to avoid physical patents (aka use only methods from 20 years
ago in a lot of cases) or spend a lot on them or hopefully have a ton of patents of your own
that you can force cross-license costs which will make you pay less overall.

Is it time for open processors?
Posted Jan 9, 2018 17:25 UTC (Tue) by excors (subscriber, #95769) [Link]

I think manufacturing a single chip takes something on the order of a million dollars and a
couple of months from when you send the completed design to the foundry. (Subsequent chips
are much cheaper and quicker). If you've been employing hundreds of engineers to design it,
and buying FPGAs and simulators to test it, the manufacturing sounds like a fairly trivial cost
(though the latency can be annoying, particularly if you find a bug and need to start again).

Is it time for open processors?
Posted Jan 9, 2018 18:35 UTC (Tue) by daney (subscriber, #24551) [Link]

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

4 of 36

Think 40 mask layers * (between $80,000 and $100000 per mask) for modern processes and
it adds up to more than "a million". The latency from design in to packaged chip out is
indeed on the order of two months.

"Metal" fixes where you just rewire the top few layers of wires to fix minor bugs are much
cheaper as you only have to regenerate a few (say six) of the masks.

The cost of employing 50-100 people for a couple of years is where the main costs to chip
development lie. It is usually more than just a "CPU" design, as you need things like DRAM
controllers, coherent cache fabrics, PCIe ports, packaging, thermal engineering, etc. for a
usable design.

Is it time for open processors?
Posted Jan 16, 2018 9:26 UTC (Tue) by marcH (subscriber, #57642) [Link]

> It is usually more than just a "CPU" design, as you need things like DRAM controllers,
coherent cache fabrics, PCIe ports, packaging, thermal engineering, etc. for a usable
design.

For low-power, single core, embedded and highly integrated SoCs the real estate used by
the CPU core can actually be small compared to all the rest. Now the relationship between
number of gates and design complexity is of course not direct, however it's not completely
unrelated either.

So yes: open-source SoCs would make a difference, open-sourcing CPU cores alone not
so much. As long as this confusion is maintained there's nothing wrong to correct :-)

Is it time for open processors?
Posted Jan 9, 2018 18:37 UTC (Tue) by mtaht (✭ supporter ✭, #11087) [Link]

This was one of the most open source design and development efforts done to
date: http://www.adapteva.com/andreas-blog/adapteva-status/

But although it was done more cheaply than anyone could have believed, by a small team
and led by someone utterly brilliant, (he wrote a good paper describing deeply how the costs
broke down

http://www.adapteva.com/wp-content/uploads/2013/06/hpec12...

) several important features proved too buggy to work in practice on the first chip revisions,
and it looks unlikely those bugs will ever be resolved, nor will they do the 1000 core
version.

Is it time for open processors?
Posted Jan 9, 2018 18:46 UTC (Tue) by mtaht (✭ supporter ✭, #11087) [Link]

oops, wrong second link. I cannot find the paper, did find some relevant slides.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

5 of 36

https://www.parallella.org/wp-content/uploads/2017/01/hip...

Is it time for open processors?
Posted Jan 9, 2018 17:05 UTC (Tue) by excors (subscriber, #95769) [Link]

As software people, maybe we need to stop relying on ever-more-complex OoO hardware to
make our code faster over time, and design software that can run optimally on simpler in-order
CPUs instead. Then open-hardware people could make reasonably competitive CPU designs
without the absurd complexity that leads to these surprising vulnerabilities and that requires the
billion-dollar R&D costs.

In particular, you can probably fit two reasonable in-order cores in the same silicon area and
power budget as one big out-of-order core, and get better performance from software that uses all
the cores. But writing multithreaded software is really hard; occasionally that's inherent in the
problem we're trying to solve, but I think in many cases it's just because our languages and tools
and design patterns make it excessively difficult and error-prone. I imagine there are lots of
expensive serial algorithms in the Linux kernel that could benefit from concurrency, but
concurrency in C usually involves far more pain than it's worth, so that rarely happens. I don't
know what languages etc would be better - I don't know if they even exist yet - but surely
something must be possible?

GPUs show that approach works in some cases. Each 'core' can be a relatively simple in-order
thing, with dozen-cycle instruction latency, no branch prediction, no per-core data cache, and can
happily stall a thread for hundreds of cycles while waiting for memory. In exchange for those
limitations the programmer is given thousands of cores, a programming model that makes it easy
to use all those cores, and much better power efficiency and peak performance than a CPU.

I don't think you'd want to run an OS kernel on a GPU - they're a bit too extreme in prioritising
throughput over latency. But maybe something halfway between GPUs and OoO CPUs (in terms
of core complexity, latency, core count, etc), with a suitable programming model to make best use
of it, could work much better than what we've got today.

Is it time for open processors?
Posted Jan 9, 2018 20:04 UTC (Tue) by andresfreund (subscriber, #69562) [Link]

I think too many use cases care about latency to a large enough that going to simple in-order
cores is going to work. It's not particularly realistic to effectively parallelize tasks that only
take a few ms to a large number of cores. There's certainly a lot of improvements needed to
take advantage of more cores, but I think the number of cases where single-core performance is
crucial will be large enough that we won't see a large move to simple in-order cores.

It's possible that we'll go more in the direction of a handful of complex OOO cores, and a lot
more simple cores for the rest of the work, but that won't help against spectre like vulns.

Is it time for open processors?
Posted Jan 9, 2018 21:03 UTC (Tue) by roc (subscriber, #30627) [Link]

The problem is Amdahl's law. There's always some part of your workload that can't be

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

6 of 36

parallelized, and given enough CPUs, that part of your workload will come to dominate
performance. Thus maximizing single-threaded performance, including using speculative
execution, is always important.

Is it time for open processors?
Posted Jan 9, 2018 23:15 UTC (Tue) by daniels (subscriber, #16193) [Link]

> The problem is Amdahl's law. There's always some part of your workload that can't be
parallelized, and given enough CPUs, that part of your workload will come to dominate
performance. Thus maximizing single-threaded performance, including using speculative
execution, is always important.

Hopefully autotools won't be with us for much longer.

Is it time for open processors?
Posted Jan 16, 2018 19:15 UTC (Tue) by hkario (subscriber, #94864) [Link]

unfortunately the current applications running in the BrowserOS only recently aren't
forced on a single CPU and each get a thread by themselves

not that it helped much for performance

Is it time for open processors?
Posted Jan 9, 2018 21:13 UTC (Tue) by tshow (subscriber, #6411) [Link]

> I imagine there are lots of expensive serial algorithms in the Linux kernel that could benefit
from concurrency, but concurrency in C usually involves far more pain than it's worth, so that
rarely happens. I don't know what languages etc would be better - I don't know if they even
exist yet - but surely *something* must be possible?

That's been the mantra for the last 30 years at least, but rather like practical fusion, it always
seems to be a decade away.

Aside from anything else, if parallelism was being held back by C-family languages, you'd
think someone would have written a library with a simple API to wrap the problem up and
isolate it from the calling language.

One of the advantages of pure functional languages is that they make parallelism easier (the
lack of side effects makes isolating functions simpler), but in practical terms the difference
hasn't been enough that the world has flipped to LISP or ML-family languages.

Besides, a lot of programming problems are stubbornly serial.

I think if anything the best hope is probably a combination of simplified faster cores and a re-
examination of the primitives modern programming languages need to do their jobs. Who
knows what performance we could wring from hardware that was built with modern compilers
in mind?

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

7 of 36

Is it time for open processors?
Posted Jan 10, 2018 8:23 UTC (Wed) by smurf (subscriber, #17840) [Link]

> I think if anything the best hope is probably a combination of simplified faster cores
> and a re-examination of the primitives modern programming languages need to do their
jobs.

Modern processor cores already are as fast as it gets … and what could be more simple,
conceptually, than "load a value, do something else while that load stalls, then do something
with the value"?

The reason some current processors only have two hyperthreads is probably because more
don't increase speed, due to switching costs, large caches, and instruction-level parallel
execution. All of this also speeds up single-threaded programs, which is why a simpler,
possibly-more-hyperthreaded processor is unlikely to win any real-world performance
awards.

Is it time for open processors?
Posted Jan 10, 2018 9:45 UTC (Wed) by renox (subscriber, #23785) [Link]

> Modern processor cores already are as fast as it gets … and what could be more simple,
conceptually, than "load a value, do something else while that load stalls, then do
something with the value"?

Not having this? Have a look at the Mill CPU (https://en.wikipedia.org
/wiki/Mill_architecture), it tries to get the same performance than modern CPU on
regular code without having the complexity of OoO CPU.

It's only slideware currently though unfortunately and its single address space design
would need big changes in current softwares so I'm not very optimistic..

Is it time for open processors?
Posted Jan 10, 2018 13:53 UTC (Wed) by smurf (subscriber, #17840) [Link]

> It's only slideware currently though unfortunately and its single address space design
> would need big changes in current softwares so I'm not very optimistic..

That's one problem.

The other: Compare to what Transmeta tried to do and what they ended up actually
accomplishing before folding. The Mill idea is an order of magnitude more ambitious,
which IMHO translates to an equally extensive uncertainty WRT the achievable results.

Is it time for open processors?
Posted Jan 20, 2018 6:49 UTC (Sat) by igodard (guest, #105242) [Link]

Mill team here. A bug-compatible x86 (Transmeta) was vastly more ambitious than
anything we ever considered. Yes, the Mill is different, but the bulk of the difference

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

8 of 36

is simplification. "Please excuse this long letter, but I did not have the time to write a
short one" - Blaise Pascal

Is it time for open processors?
Posted Jan 10, 2018 14:55 UTC (Wed) by jcm (subscriber, #18262) [Link]

Good luck to them. They have absolutely no chance whatsoever.

Is it time for open processors?
Posted Jan 10, 2018 15:14 UTC (Wed) by mtaht (✭ supporter ✭, #11087) [Link]

One really remarkable thing I've learned in life: *Sometimes* Don Quixote does
win.

Is it time for open processors?
Posted Jan 11, 2018 20:47 UTC (Thu) by joib (subscriber, #8541) [Link]

To begin with, I think it's important that we as a society fund wild out-there stuff, even
if most of it "fails". Because the alternative is incrementalism, which we have enough
of already, thank you very much. So in the grand scheme of things, I think it's perfectly
Ok if we spend some 10's of millions of $$$ on Mill to see if the idea flies.

That being said, the Mill "belt" seems like a somewhat clever mix between "normal"
register based cpu's and a stack machine. OTOH I'm not convinced it avoids the
problems in making a superscalar pipelined stack machine, in that you get a very strict
ordering requirement due to the results being pushed on top of the stack (or onto the
end of the belt in Mill). Further, their IPC claims seem, er, really far out there; I don't
understand how they can credibly claim such numbers. Add in the fact that after all
these years they still have nothing more than powerpoints to show, so I'm a bit
skeptical.

But if it works out, hey, awesome!

Is it time for open processors?
Posted Jan 16, 2018 9:39 UTC (Tue) by marcH (subscriber, #57642) [Link]

> Aside from anything else, if parallelism was being held back by C-family languages, you'd
think someone would have written a library with a simple API to wrap the problem up and
isolate it from the calling language.

The memory model has to be built in the language. C/C++ finally got one after 40 years.
http://www.hboehm.info/c++mm/

https://doc.rust-lang.org/book/first-edition/concurrency....

Is it time for open processors?
Posted Jan 9, 2018 21:14 UTC (Tue) by jcm (subscriber, #18262) [Link]

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

9 of 36

Nice ideas, but the reality is that the industry has convinced itself that only software matters.
Nobody cares about hardware, and nobody understands it at anything like the scale of the
number of software engineers who can write python to run on brawny cores. Certain players in
the industry have spent years literally sucking the competency out of others in an effort to
benefit from the extreme logical extent of abstraction. This will never be fixed. The only path
is open and fair competition from alternatives provided by companies who can make a decent
living enough to invest in taking on incumbents.

Is it time for open processors?
Posted Jan 9, 2018 22:58 UTC (Tue) by mtaht (✭ supporter ✭, #11087) [Link]

With industry consolidation (Intel buying Altera, Broadcom buying Qualcomm, Synoptics
buying up a zillion toolmaker), I am pessimistic about the future of complex hardware
design.

Is it time for open processors?
Posted Jan 9, 2018 23:15 UTC (Tue) by jcm (subscriber, #18262) [Link]

Me too. I have been for years.

Is it time for open processors?
Posted Jan 10, 2018 0:34 UTC (Wed) by tpo (subscriber, #25713) [Link]

Does anybody in this thread have a figure on how much out of order execution buys you? Is
that in the order 50% or of a factor of 2 or 10* or ... ?

50% or a factor two is not huge and I would guess that this could be gained by less fat and
wasteful software stacks. I think modern programs do *huge* memory I/O due to fat stacks
and OO, so I think most programs are RAM I/O bound (i.e. word processing does basically
what it did 30 years ago, except for the much prettier glyphs, but is using 10² - 10³ times more
RAM for the "same task").

Wrt to parallelisation I think the only "workable" paradigm is message passing (what I
understand of Rust's parellelizing paradigm I would consider as message passing).

But, as far as I understand, message passing is even more demanding on I/O since the OS
needs to be copying a lot of data, so that'd be even worse. The only solution to that problem I
can see is something like HPs "The machine" concept where you have a lot of cores with a lot
of local RAM and extremely fast message passing between the cores. Which as an abstraction
maps somewhere between "each core has it's own OS" and "each core is a process".

All this is my reasoning as a non-practitioning bystander looking at the various working and
imagined concepts.

Are there papers looking at these concepts quantitatively and holisticaly? I.e. price per
"processing unit", total computing throughputs, I/O throughputs, estimates of the degrees of
freedom in applications (in how many parallel parts could typical workloads be possibly
split?)?

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

10 of 36

That is, do we know for sure that fat sequential CPUs will always win with today's workloads
and the paradigms that we are aware of?

Is it time for open processors?
Posted Jan 10, 2018 1:59 UTC (Wed) by Cyberax (✭ supporter ✭, #52523) [Link]

The OO gain is about 5x or more on many loads. 100x is not unheard of for carefully tuned
code.

Is it time for open processors?
Posted Jan 10, 2018 14:58 UTC (Wed) by jcm (subscriber, #18262) [Link]

Yea, OoO benefit is *huge*. And there's nothing wrong with OoO. The problem comes
when you take the implementation a little far and separate your permissions checking
from your other logic (and handle the exception at retirement) in the name of speed.

OoO has limits. Intel's general approach for a while has been to shove progressively large
reorder windows into their cores. You get to do that for a few generations before it stops
buying you increased performance. I've been gleefully looking forward to how they
handle trying to exceed 224 entries in flight, because it won't let them publish PowerPoint
slides showing much benefit. They'll probably still go and build it tho.

Is it time for open processors?
Posted Jan 10, 2018 15:45 UTC (Wed) by excors (subscriber, #95769) [Link]

> there's nothing wrong with OoO

Can you realistically have an OoO CPU without speculative execution? (I'd assume not
since OoO execution benefits from having lots of instructions in flight, and most
programs don't exclusively use long sequences of instructions with no branches, so
you'd lose too much performance if you didn't speculate across branches.)

Spectre seems to indicate there *is* something fundamentally wrong with speculative
execution (hence with OoO). CPUs will execute sequences of instructions that do not
match the program they're meant to be running. Execution is observable through a wide
variety of side channels. It doesn't matter how rigorously we prove the security of our
software, and how it avoids revealing any secrets over those side channels, if the CPU
is going to execute something arbitrarily different. It therefore becomes impossible to
write secure software.

Is it time for open processors?
Posted Jan 10, 2018 17:37 UTC (Wed) by Jonno (subscriber, #49613) [Link]

> Spectre seems to indicate there *is* something fundamentally wrong with
speculative execution

No, Spectre only indicates that there is something fundamentaly wrong with *some*
speculative execution.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

11 of 36

In the RISC-V community, the current consensus seems to be that only the following
4 categories of speculation are potentially problematic:

- Using a speculated register value as a memory address
- Using a speculated register value as a branch condition
- Using a speculated register value as a jump/branch target
- Using a speculated register value in a variable-time instruction.

If you avoid these, all other speculation should be fine, notably including prefetch,
branch prediction, fixed-time instructions, and using retired registers as
memory adresses / branch conditions / jump/branch targets / variable-time instruction
arguments.

Is it time for open processors?
Posted Jan 10, 2018 17:42 UTC (Wed) by Cyberax (✭ supporter ✭, #52523)
[Link]

You can have CPUs with speculative execution but not speculative memory fetches.
I.e. CPU will be able to reorder and/or parallelize code like this to better utilize
available ALUs:
> a = b + c
> d = a << 2
> e = k + 1

But it won't do any memory fetches.

Is it time for open processors?
Posted Jan 10, 2018 22:43 UTC (Wed) by brouhaha (subscriber, #1698) [Link]

Or you can have OoO with speculative execution, but allow speculative loads
ONLY from cache. Without doing a lot of simulation, I don't know how much
performance that would gain compared to having no speculative loads. Obviously
it depends on the data cache hit rate.

Is it time for open processors?
Posted Jan 13, 2018 13:15 UTC (Sat) by ianmcc (subscriber, #88379) [Link]

I'd imagine that loading something into cache would be a major performance
benefit of speculative execution. We'll have to wait and see what they come up
with, but I reckon it will be some kind of separate cache for speculative
execution.

Is it time for open processors?
Posted Jan 13, 2018 14:20 UTC (Sat) by excors (subscriber, #95769) [Link]

And a separate L2 cache, and L3, and eDRAM, and TLBs? and some other
magic to deal with reading data that's currently dirty in another core's cache?

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

12 of 36

I don't understand how it could be feasible to read memory without it being
observable in some way.

(Even reading from L1 cache might be observable, if it modifies some LRU-
replacement state inside the cache.)

Is it time for open processors?
Posted Jan 10, 2018 17:11 UTC (Wed) by tpo (subscriber, #25713) [Link]

I think there *is* something fundamentaly wrong with the concept of OoO execution
and that is that it makes it hard to reason about computing. The abstraction is not well
defined, it's not orthogonal, its boundaries and also it's state machine are unclear. As
excors said, Spectre is a symptom of this.

If f.ex. you are confronted with the question:

* how much power does this instruction consume?
* how much time and how many cylcles will it take to execute?
* can it cause an interrupt or be interrupted?
* etc.

then every answer will contain a lot of "it depends" and in the end you won't be certain
anyway because an execution of a single CPU instruction is an extremely complex
undertaking. Or in other words in the equation:

outputs =f_cpu_instruction(inputs)

you have really no idea what exactly the opaque inputs are and what the visible or
invisible outputs will be, if you consider the equation to consist of more than just the
opcode and it's parameters. A modern CPU really is a "strange machine".

So the real question IMHO is again: are we sure that complexity and not well defined
behavior really are the price we have to pay for performance?

Is it time for open processors?
Posted Jan 10, 2018 21:17 UTC (Wed) by farnz (subscriber, #17727) [Link]

The challenge is that moving the "it depends" from silicon to software is known to be
a difficult undertaking.

We know from HP's old Dynamo work (a PA-RISC JIT interpreter running on a PA-
RISC system) that optimizing code based on runtime information can provide extra
performance not available if you optimize based only on information available at
compile time, and that the benefit of doing so can outweigh the cost of a JIT
interpreter, let alone dedicated silicon that does the job.

We know from the fates of VLIW processors, Transmeta and Intel's Itanium that's it's
hard to produce a chip design that's simple to reason about (Itanium, at least, exposed

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

13 of 36

most of the complexity to software, and was easy to reason about at the assembly
level, because all the hard stuff that makes modern x86/ARM/POWER etc difficult
to reason about is in the software instead of the hardware). Further, the lack of a
FPGA Mill (or, indeed, anything other than simulation) implies that they're finding it
hard to design a predictable CPU that performs well on the workloads people care
about.

Given all this history, I'd expect there to be at least one PhD's worth of advances in
the state of the art required, if not multiple, before we can get to a point where high
performance CPUs are simple enough to be predictable. I suspect this is why the
Spectre researchers expect it to keep haunting us - we are currently facing the choice
between sacrificing a significant chunk of both performance and energy efficiency
but being secure, or trying to patch the known side channels as we spot them. Neither
is a particularly nice place to be in; still, if you ever fancy doing a PhD in computer
architecture, this would be a great problem to tackle :)

Is it time for open processors?
Posted Jan 11, 2018 21:12 UTC (Thu) by mtaht (✭ supporter ✭, #11087) [Link]

"Further, the lack of a FPGA Mill (or, indeed, anything other than simulation)
implies that they're finding it hard to design a predictable CPU that performs well
on the workloads people care about".

Um, no, they've been ready to start towards an FPGA implementation for a while
and have stalled out for lack of the funding required (they estimate about 10m). It's
kind of hard to explain the Mill feature set and long term payoff to VCs that would
rather find the next big thing in web services without the "heavy semi" level of
investment required to make a new chip from the ground up.

I am kind of hoping that post-spectre "because, security" might now be a more
valid argument to those with a long term viewpoint or money at risk.

Confession: I am an unabashed Mill fan. It's way less baroque than the itanium
was. I'm not going to sit here and write about my favorite top 10 features here but
have always encouraged frustrated folk to have a beer, queue up a talk, and inspect
the architecture and instruction set, and dream a little. Am I alone in remembering
how fun that was in the days Byte Magazine stalked the earth?

https://millcomputing.com/docs/

Even though their business model for the chip logic itself does not have open
source as part of it presently, certainly most of the tools will become so (example
their compiler is LLVM based).

No matter if they succeed or fail, the ideas they've put forth are worth thinking
about.

That said, there is no way that the Mill would enter a Xeon-like market in its first

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

14 of 36

3 generations - but it could displace 100s of millions of virtual-memory-less DSPs
and compete with arm on the low end after it first taped out in a reasonable
process. I worry a lot about the security and reliability of all the 260+ cpus in a
modern car, for example. I worry about the constant decline in real-time
functionality we're seeing in mainstream cpus (and the related rise of unsecured
co-processors sharing memory space). Does a tesla need KPTI?

I also am a fan of more software engineers getting interested in EE (programmers
and EEs need to start going to the same parties again because they barely share a
common language nowadays) . I wish efforts like DARPA's CRAFT program to
find ways to accelerate chip design and validation was better funded. I'm a strong
supporter of the RISC-V effort (not just to have an open source set of chips but as
teaching tools for the next generation of EEs, and in particular, develop better
hardware design languages). R&D into software methods in support of better
hardware design used to be a vibrant and interesting field back in the 80s. R&D
into micro-kernels and capabilities has been mostly dead for years...

After being thoroughly exposed the security exposures getting worse by the day
while doing the cerowrt project, I almost dropped out of the bufferbloat project
and went to work on the Mill.

Is it time for open processors?
Posted Jan 12, 2018 9:54 UTC (Fri) by farnz (subscriber, #17727) [Link]

Honestly, given the cost of doing an FPGA implementation, that sounds like an
excuse - I'm not expecting the first FPGA implementation to be particularly
high end (it's just a proof of concept, after all). They're spending money on
salaries for people to write the simulations already - they can afford to spend
that same money on people writing HDLs instead, and a Stratix 10 dev kit is
under $10,000. 2.8 million logic elements won't be enough for a high end CPU
design, but should be plenty to show that their lowest end design is workable at
a reasonable clock speed (say 800 MHz or so). And I've watched all of Ivan's
talks - I'm not convinced that it'll actually be possible to implement all of the
Mill in an acceptably performant fashion (for an FPGA implementation,
competitive with a soft core in the same FPGA - say a low end ARM Cortex); I
suspect that it'll be very hard to design something that matches the functional
simulations that we've seen and that manages a decent clock speed under timing
closure.

I'm not expecting amazing results from an FPGA design, after all - but I've seen
enough of the industry to know that if you can't demo your digital logic in
anything other than a simulator you wrote, there's likely to be significant issues
actually transposing the design from simulation to hardware. The most common
foul-up I've seen is cases where, once you implement in hardware, you can't
make timing closure without a hugely long critical path; this won't necessarily
show in a functional simulation, because you don't have to simulate gate delays.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

15 of 36

It's also worth remembering that this class of attack relies on untrusted code
sharing the same device as your code; as long as the critical car electronics is
kept separate from infotainment, reporting etc, and only connected via
Ethernet/CANbus or similar communications methods, they don't apply. Thus,
the autonomous driving functionality of a car doesn't have to care about these
attacks - while they may well be possible, if the only code running on the
autonomous CPUs and the motor/steering control CPUs is trusted and does not
accept arbitrary user input (which rules out a music player being part of the
trusted domain - you get a blob of data from the user), then the attack is
harmless; same can apply within companies, where it doesn't matter if the
payroll process can, by being attacked, reveal payroll information to the pay
increase process on the same system.

Is it time for open processors?
Posted Jan 12, 2018 12:45 UTC (Fri) by mtaht (✭ supporter ✭, #11087)
[Link]

I think the Mill long ago passed the "show me the gates" stage also.

Although the costs of devkits like the stratix-10 are now quite reasonable,
perhaps the ultrascale (50m gates) would be better.

I also don't think it could be a competitive softcore. An FPGA POC would
shed doubts and bootstrap software development, only - both direly needed
though!

* The width of various busses is a problem
* The stack spiller is complicated
* dozen other things like cache design are not off the shelf

I wouldn't even hazard a guess as to the achievable clock rate in an FPGA.
Something greater than 0 would be nice.

Is it time for open processors?
Posted Jan 12, 2018 16:07 UTC (Fri) by farnz (subscriber, #17727) [Link]

I wouldn't expect it to be a competitive softcore - as far as I'm concerned,
the point of building something like the Mill as a softcore filling an entire
Stratix 10 is to show that the performance results you get from simulation
are achievable in real hardware, too, and that when you say that you can
scale up performance in an ASIC, you're not pulling numbers from your
fundament.

Also, to bring this full circle, the point of including Mill in the list was to
show that it's not easy to do well at high performance predictable
processors. Transmeta failed with an existing (well-understood) ISA and
JIT to the predictable CPU; Itanium failed despite having two big tech
companies (HP and Intel) pushing it hard. Mill is doing the start from

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

16 of 36

scratch and design everything for predictability thing, and despite over a
decade of work from serious engineers (none of the Mill team strike me as
clueless dreamers), they've still not got product. So, of the efforts to be
high performance and predictable, the only one that has shipped product
and not yet been canned is Nvidia's Denver series - but even that's now
being paired with "traditional" OoO cores, and we don't yet know whether
Carmel is a traditional OoO core, or a Denver JIT core.

Basically, this stuff is hard, and so far, there's no constructive proof that we
can do a predictable core that's as fast for real workloads as a traditional
OoO core with all the tricks.

Is it time for open processors?
Posted Jan 16, 2018 18:27 UTC (Tue) by mtaht (✭ supporter ✭,
#11087) [Link]

just for the record, the mill folk published a paper on spectre/meltdown
vs mill:

https://millcomputing.com/blog/wp-content/uploads/2018/01...

I am long-term curious about novel attacks against the PLB management
code, however, I'm too low on sleep to care for a good long time.

Is it time for open processors?
Posted Jan 16, 2018 19:37 UTC (Tue) by excors (subscriber, #95769)
[Link]

That paper seems to get decreasingly confident towards the end. The
introduction states simply:

> The Mill CPU is not vulnerable to the Spectre and Meltdown
attacks. The Mill is an in-order machine and Spectre and Meltdown as
described take advantage of speculative execution on out-of-order
machines.

but later they say that it was effectively vulnerable to Spectre because
of a compiler feature (it could generate code that performed
speculative reads).

Given that code always gets transformed through multiple levels of
software/firmware/microcode/hardware before finally executing any
operations, and modern "in-order" CPUs (Denver, the Mill, etc) seem
to still use speculation to improve performance and just implement it
slightly higher in the stack of transformers than traditional OoO
CPUs, "in-order" vs "out-of-order/speculative" seems a fairly artificial
distinction - what matters for security is the combined result of the
entire stack. (At least it's easier to disable speculation if it's happening

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

17 of 36

at a higher level than hardware, since you can push a
software/firmware/microcode update instead of new silicon, but it
might still suffer the same performance impact.)

They also say:

> The Mill has not been vulnerable to Spectre variant 2 because the
Mill has a very short pipeline and low mispredict penalty, so loads
erroneously issued will be revoked in time before they have any side
effects. This was an unanticipated side effect of the Mill design

which seems to indicate that being an in-order machine *doesn't*
make the hardware fundamentally immune to Spectre anyway, it was
just a lucky result of their current pipeline design.

Is it time for open processors?
Posted Jan 20, 2018 8:24 UTC (Sat) by igodard (guest, #105242)
[Link]

The Mill architecture is not vulnerable to Meltdown or Spectre. In
the course of verifying that assertion we found a bug in the
compiler that would cause it to sometimes schedule loads without
the predicates that were supposed to guard them. We fixed that.

The Mill makes no guarantee that system software is bug free; no
compiler does. There are bug reports that I filed against gcc that are
still open a decade later. If a compiler turns source "(x+y)*z" into
machine code that computes "x+(y*z)" then that is a bug in the
compiler, not a flaw in the architecture. Likewise, if a compiler turn
source "if (b) x = y;" into "t0 = y; if (b) x = t0;" then that is a bug in
the compiler, not a flaw in the architecture.

That was the bug we found. The correct machine code computes
"b? t0 = y; if (b) x = t0;". It's been fixed.

Is it time for open processors?
Posted Jan 20, 2018 10:09 UTC (Sat) by farnz (subscriber,
#17727) [Link]

Arguably, this is where the Mill design shows its strength;
because almost all the speculation is done in the compilers, you
only need to update software as and when a new Spectre-like
problem is found. Further, where there's no security boundary
between two chunks of code (hence no worry about Spectre -
why use a side-channel attack when you can read directly?), Mill
can compile in extra speculation, whereas Intel has to leave that
speculation out just in case.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

18 of 36

Is it time for open processors?
Posted Jan 21, 2018 9:06 UTC (Sun) by smurf (subscriber,
#17840) [Link]

> if a compiler turn source "if (b) x = y;" into "t0 = y; if (b) x =
t0;" then that is a bug in the compiler

Depends on the memory model. If there's no way y might be in
inaccessible memory and it's not marked as volatile, I wouldn't
consider that change to be a bug.

Is it time for open processors?
Posted Jan 20, 2018 8:06 UTC (Sat) by igodard (guest, #105242) [Link]

Show me the gates?

There are critical paths in development as in CPUs. There's no point in
doing FPGA work until you have proven in sim that a concept is correct
and is what you want and fits with the rest. But you have to feed the sim,
so you need a tool chain. And even when you have it all in house, if the
sim or FPGA exposes nifty ideas then you can't publish either until the
patents issue. And there are iterations at each stage as you find things that
don't work, or get better ideas. Heavy semi takes a long time, just like
cement plants and steel mills. It takes the Intels a long time too.

Showing gates to tire-kickers is at the very end of that.

Is it time for open processors?
Posted Jan 20, 2018 8:45 UTC (Sat) by Cyberax (✭ supporter ✭,
#52523) [Link]

> then you can't publish either until the patents issue
Until you _file_ for a patent.

Is it time for open processors?
Posted Jan 20, 2018 7:50 UTC (Sat) by igodard (guest, #105242) [Link]

I wish we could move salaries from simulator to FPGA, but you apparently
missed the memo - the Mill project has always been bootstrap, and there
never have been salaries for anyone. Our part-timers are dedicated, but still
not full time, and still paid only sweat-equity.

Is it time for open processors?
Posted Jan 20, 2018 10:04 UTC (Sat) by farnz (subscriber, #17727) [Link]

That just emphasizes my core point; doing a high performance CPU design
that's also highly predictable is hard. You've been working on this for

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

19 of 36

around 10 years now, and still aren't in a position to make money from it.
When you combine that experience with Intel's Itanium, and Transmeta's
long term fate, it's clear that the reason that commercially successful high
performance designs are all either massively multithreaded (Nvidia GPUs,
Intel Xeon Phi) or vulnerable to Spectre (high end ARM, Intel Core) is not
that there's a silver bullet we're all overlooking, but that even with very
clever people working on a new design, it's a really hard problem, and it's
really hard to go from "interesting ideas" to "demonstrable ability to build
a CPU that could be competitive given money".

I included Mill because you're attempting something interesting in the
"CPUs that are completely predictable" space, and you're not getting huge
wins quickly - you're evidence that high performance processor design is
fundamentally hard, even if you throw away "conventional wisdom".
Given your experience, Itanium, and Transmeta, I feel confident in saying
that there's no easy way to design fast CPUs that don't do speculative out
of order execution; there are hard ways, but then we're looking at
engineering tradeoffs.

Is it time for open processors?
Posted Jan 11, 2018 3:50 UTC (Thu) by areilly (subscriber, #87829) [Link]

Many loads? I imagine that there are some that might get to a factor of five, but I'm
interested to know what the factor-100 ones look like.

There are plenty of other workloads, of the dense numerical or media-processing variety
where out-of-order doesn't buy very much at all, which is why most embedded DSPs are
in-order VLIW-shaped, and why the much smaller in-order Cortex A53 is rarely more
than a factor of two slower (per cycle) than the much bigger out-of-order cores, on that
sort of workload.

I'd be quite interested to know how many of those factor-100 workloads survive
latency/throughput tradeoffs against flock-of-chickens style systems, or custom hardware.

Anyway, the world is an interesting place, with many different workloads, so it's hard to
generalize. In the absence of much extra cost, of course everyone will buy the fastest
single-thread option. But if the cost goes up, as a result of work-arounds, things can
change. Or if ways to speculate safely turn out to be less expensive than thought, then it's
all back on again.

Is it time for open processors?
Posted Jan 11, 2018 14:59 UTC (Thu) by excors (subscriber, #95769) [Link]

Cortex-A53 (in-order) vs Cortex-A57 (out-of-order) does seem to be about a factor of 2
difference in typical benchmarks at the same frequency. (And a greater-than-2
difference in power and area). I guess the problem is that it's hard to push an in-order
design significantly further than the A53. You could add more execution units but you

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

20 of 36

won't be able to use them since you can't extract any more parallelism from typical
code. You need a short pipeline (since long ones are expensive to stall, and in-order
stalls a lot), but that makes it hard to run at higher frequencies. The memory system
needs to prioritise latency over bandwidth and capacity. Etc. Meanwhile OoO designs
can go significantly further than the A57, as demonstrated by high-end Intel CPUs
(or even by newer ARM cores) - the main benefit doesn't come directly from OoO itself
but from all the other optimisations that become viable once you have OoO.

Is it time for open processors?
Posted Jan 11, 2018 19:45 UTC (Thu) by areilly (subscriber, #87829) [Link]

Don't get me wrong: I'm a big fan of out-of-order designs. It's incredibly cool that it
can be made to work at all, and you can't say no to the straight-line speed, when it's
on offer. Certainly takes a lot of the effort off careful processor-specific optimization
at the code and compiler level. But if it turned out that we've been chasing an
illusion, and not being able to speculate loads that miss in the cache knocks most of
the performance benefit off (I've seen credible measurement of 37% performance
loss on Haswell from ISBS MSR protections for Spectre, for compilation tasks) then
a re-think might be in order.

I don't agree that A53 is as far as in-order can be pushed, although it is a beautifully
balanced design for its niche. It's only two-way scalar, and its SIMD units are only
64-bits wide. There's plenty of room to grow. Even within the ARM world, the
Denver cores are 7-ish way scalar in-order and clock as fast as any of the other
mobile devices. The in-order SPARC cores were never as fast in single-thread
benchmarks as out-of-order cores of the day, but they weren't as much slower than
the (older) intel Core parts after the Spectre mitigations are enabled.

I remember the discussions when Alpha was going wide but still in-order, and
competing against early out-of-order MIPS cores. The compilers were happy enough
to compile some speculation into the code, by turning short contitionals into execute-
both-branches-and-conditional-move-result style. Probably not possible to do that
over a 200-instruction speculation window like current cores, but you'll get some of
the way. And they weren't building wide SIMD vectors back then.

Is it time for open processors?
Posted Jan 11, 2018 23:49 UTC (Thu) by excors (subscriber, #95769) [Link]

I believe Cortex-A53's NEON is actually 128-bit wide (or 2x64), for most float
and int operations.

The 7-wide vs 2-wide comparison seems a little misleading - I think Denver
doesn't have many more execution units than A53, the main difference is that
Denver can theoretically decode and dispatch to all 7 at once (when using its
custom VLIW ISA, and apparently only in unlikely cases where all 7 micro-ops
can fit into one 32B bundle; and apparently it needs an average of 1.8 micro-ops
per ARM instruction, so it can practically do maybe 3 ARM instructions per

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

21 of 36

cycle).

It sounds like Denver's ARM-to-VLIW optimiser actually does something
equivalent to speculative execution (statically predicting branches and emitting
speculative micro-ops to keep the execution units busy), so could be vulnerable to
Spectre. At least the optimiser is just software so they could fix it fairly easily (at
some performance cost).

In some ways I think that reinforces my (not-very-well-thought-through) argument
:-) . Denver's hardware might be technically in-order, but they use lots of the
normal out-of-order techniques (with most of the same costs and risks) to achieve
just 3 ARM-instructions per cycle. Presumably they wouldn't have bothered with
all that complexity if they could have reached the same much-better-than-A53
performance with a pure in-order design.

Is it time for open processors?
Posted Jan 12, 2018 1:22 UTC (Fri) by excors (subscriber, #95769) [Link]

Oh, in addition to the static speculation performed by the optimiser, apparently
the Denver hardware continues executing speculatively after a cache miss (in
the hope that subsequent instructions with not-quite-correct data will pull useful
things into the cache) then rolls back once the data arrives. That sounds like a
second vector for Spectre, and one that can't be simply disabled in the optimiser.

(This is based on the information in https://piazza.com/class_profile
/get_resource/hzbgxhrhoe3...)

Is it time for open processors?
Posted Jan 12, 2018 2:27 UTC (Fri) by jcm (subscriber, #18262) [Link]

Forward speculation like that is called "runahead". I believe Intel do similar
on some of their cores. As do others. And yes, it's ripe for analysis.

Is it time for open processors?
Posted Jan 11, 2018 19:44 UTC (Thu) by Cyberax (✭ supporter ✭, #52523) [Link]

Stuff with a lot of pointer chasing, like linear algebra on large sparse matrices.

Is it time for open processors?
Posted Jan 11, 2018 19:59 UTC (Thu) by areilly (subscriber, #87829) [Link]

True, that is probably the biggest win for designs that can speculate through loads,
but that's precisely the sort of code that is going to be hit on the head by the Spectre
mitigations anyway. I can imagine an HPC installation (or, indeed, a big-iron
database installation) coming to the conclusion that they're going to rely on the fact
that they don't run user-provided code on their isolated machines, and their normal
malware protection protocols are up to the task: they just won't enable the

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

22 of 36

mitigations. I certainly wouldn't if I was running something on a single-function
embedded system.

If your twisty pointer-chasing sparse linear algebra is going to run on someone's
cloud infrastructure though, they'll have the mitigations turned on, and it will run
badly anyway. So you can re-code to speculate explicitly, in software, (Itanium
style), or demand a discount and just turn on some more processors. There have been
some nice research papers about running code like that on pairs of cores, (hyper-
thread style), with one core of the pair scampering ahead and speculating the
memory pattern, so that the speculated lines are in cache, while the other grinds away
doing the math, directly out of cache. I doubt that there are many compilers that can
construct that sort of code automatically, because the Out-of-order cores did such a
great job on their own. Now's the time to dig them up, perhaps.

Is it time for open processors?
Posted Jan 11, 2018 20:16 UTC (Thu) by joib (subscriber, #8541) [Link]

HPC systems I'm familiar with tend to have hundreds of accounts, all with shell
access (via ssh). And users who are scientists, and not computer experts (many
struggle with things like ssh keys etc.). They are a phished account + local root
vuln. away from pressing the "nuke from orbit" button. Presumably it's different
for supercomputers used for nuclear weapons research..

As for the dual thread idea, maybe you're thinking of "scout threads" that Sun was
investigating back in the day?

Is it time for open processors?
Posted Jan 11, 2018 20:27 UTC (Thu) by Cyberax (✭ supporter ✭, #52523)
[Link]

SPARC actually explored the "multiple threads" idea. Basically, instead of waiting
for a load to finish they switch to another thread. This worked reasonably well
only for embarrassingly parallel workloads like web servers.

Is it time for open processors?
Posted Jan 11, 2018 20:21 UTC (Thu) by joib (subscriber, #8541) [Link]

> like linear algebra on large sparse matrices.

Luckily for linear algebra we have solutions that don't require speculation for
performance, namely vector processing (I mean "real" vector ISA's not the short
vector packed SIMD extensions popular in current microprocessors). Or GPU-style
SIMT, if that floats your boat. Sure, in the short term it's going to be painful, but we
know how to engineer ourselves out of this particular hole.

Many other workloads aren't so fortunate.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

23 of 36

Is it time for open processors?
Posted Jan 11, 2018 20:23 UTC (Thu) by Cyberax (✭ supporter ✭, #52523)
[Link]

It doesn't help with sparse matrices, unfortunately. I also encountered the same
problems when I was doing bioinformatics, namely DNA assembly.

Is it time for open processors?
Posted Jan 11, 2018 20:34 UTC (Thu) by joib (subscriber, #8541) [Link]

> It doesn't help with sparse matrices, unfortunately.

Vectorizing sparse matrix operations tends to be the textbook example for the
usefulness of scatter/gather in vector ISA's.

I guess today scatter/gather isn't as awesome as is used to be, as with current
arithmetic/bw ratios on mainstream CPU's the CPU becomes memory bound
anyway. But with less opportunity for speculation, perhaps there's place for a
comeback (AVX-512, ARM SVE, and the RISC-V V extension all have them).

Is it time for open processors?
Posted Jan 17, 2018 15:15 UTC (Wed) by mstone_ (subscriber, #66309) [Link]

unfortunately the consumers of such products don't have the pocketbooks to
support the development of such products--that's why everyone is now running
commodity CPUs.

Is it time for open processors?
Posted Jan 10, 2018 16:57 UTC (Wed) by jezuch (subscriber, #52988) [Link]

I think Intel tried that with Larrabee. And Sony with Cell. If that's the future then these efforts
were significantly before their time :)

Is it time for open processors?
Posted Jan 10, 2018 17:48 UTC (Wed) by excors (subscriber, #95769) [Link]

Larrabee failed because it was meant to be a GPU, and it took years to realise their
architecture had terrible performance when used as a GPU. But it led to Xeon Phi which has
been used in quite a few supercomputers, so it seems the general concept can work for some
software.

With Cell, I got the impression the main problem was that the SPEs were complex and
unfamiliar - they probably weren't a fundamentally flawed architecture, but game developers
didn't have the experience or tools to use them effectively, so they were a huge pain in
practice. And they didn't give much better performance than a standard 3-core CPU plus
GPU, so they weren't worth the costs. But nowadays game developers are having to deal
with 8-core CPUs and GPGPU, and probably expecting future consoles to go even wider, so

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

24 of 36

they're designing engines with task-based parallelism that can easily scale to large numbers
of cores and can mix CPU and GPU tasks, so they should be better able to cope with a Cell-
like system now.

Is it time for open processors?
Posted Jan 11, 2018 3:40 UTC (Thu) by jimzhong (subscriber, #112928) [Link]

I think with the help of powerful optimizing compilers, in-order processors can be competitive
with OoO ones.

Is it time for open processors?
Posted Jan 11, 2018 10:16 UTC (Thu) by farnz (subscriber, #17727) [Link]

That was what the Intel Itanium was supposed to be - an in-order core that was as powerful
as the best OoO cores they could build. It didn't work out that way - the "powerful
optimizing compiler" never got good enough to be as fast on the in-order core as OoO cores
were when you applied the same compiler power.

Further, the HP Dynamo work gives us reason to believe that runtime optimization will
always be necessary to get peak performance; on an OoO processor of the late 90s, they
demonstrated that a JIT recompiling native code to native code was faster than just running
the native code directly.

I suspect that there are multiple PhDs worth of work to go from where we are today
(complexity in OoO hardware, which "JITs" the native code into fast executing code), to a
world where in-order CPUs are as fast as OoO CPUs; we need a good runtime JIT to convert
a useful intermediate form to something that can be executed, and we need to know what the
intermediate form and the something that can be executed should look like.

And looking around at the market, this isn't something that's not been tried: Itanium failed
(no-one even wrote a useful JIT for it); Transmeta failed (maybe it could have done better if
the code morphing had been open, but I doubt it); Mill hasn't yet got as far as an FPGA
model, let alone real silicon (so may never get to a high performance implementation - if
you can't do hardware, only simulations, then you run the risk of real hardware massively
underperforming for reasons your simulation didn't take into account, like thermals).

Is it time for open processors?
Posted Jan 11, 2018 21:39 UTC (Thu) by areilly (subscriber, #87829) [Link]

Nvidia's Denver core is the current poster child for this idea. It gets past the slow startup
problem by having a single-issue hardware decode path, so the JIT doesn't have to fire up
unless it's busy code. Worked competitively in my old Nexus-9. Would be nice if you
could compile your dense linear algebra directly to the VLIW core of you wanted to, imo.

Is it time for open processors?
Posted Jan 12, 2018 10:00 UTC (Fri) by farnz (subscriber, #17727) [Link]

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

25 of 36

It will be interesting to see what happens with Denver, yes - Nvidia has already gone
from "Denver1 is the only CPU core you need" (in the K1) to "Denver2 is paired with
ARM's Cortex-A57 so that Denver2 only provides the high-performance cores" (in the
X2). If Carmel is effectively Denver3, then that validates the idea (to a degree), but if
it's a more "traditional" ARM core, Denver can be added to the list of "couldn't quite
make it work out" variants on the "fast in-order core, with complexity in software".

Is it time for open processors?
Posted Jan 11, 2018 4:43 UTC (Thu) by dvdeug (subscriber, #10998) [Link]

I've thought about going back to 1970 and give a lecture to a conference on programming
languages on modern programming languages. The hardest question would be concurrency.
Go's going back to Algol 68 and coroutines, Scala supports threads and actors <i>and</i>
parallel data structures, and then we've got stuff like Spark and Hadoop on the large scale and
direct CPU vector support at the lowest level. That's a huge range of options and remarkably
little consensus about which ones are better. We're already pushing people towards more
parallelism, given that quad-cores are becoming standard on desktops, but it's really hard.

Is it time for open processors?
Posted Jan 12, 2018 6:44 UTC (Fri) by paulj (subscriber, #341) [Link]

That's exactly the premise behind the UltraSPARC T1 and T2: Simple in-order core. Instead of
trying to extract parallelism out of a single execution stream, it instead optimises for the
software explicitly being coded for parallelism by creating threads. If a thread of execution
stalls on memory, the core switches to another.

The benefit to ditching all the logic and long pipelines to support OoO and speculative
execution, and using simple, in-order execution, is that you can pack a lot more of those cores
into the same transistor budget.

So you get a CPU that scales up really to handle loads that scale-out via threads of execution.
The downside is that any single thread of execution is (much) slower than on a highly
pipelined, speculative, OoO processor.

Is it time for open processors?
Posted Jan 9, 2018 23:46 UTC (Tue) by immibis (subscriber, #105511) [Link]

How much does it cost to get an OS kernel into production in billions of devices?

Is it time for open processors?
Posted Jan 10, 2018 0:05 UTC (Wed) by balkanboy (subscriber, #94926) [Link]

You can always force a paradigm shift by introducing a good crisis just like this one w/Spectre &
Meltdown, particularly if it affects large groups of people among which are also CPU
manufacturer shareholders. One doesn't get Intel to budge unless there's something in it for them
or you introduce a real threat to their existing, business-as-usual model.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

26 of 36

I know I shouldn't be, but I am kind of glad this happened - it provides a major kick in the ass for
Intel and makes AMD looks good - they needed a boost like this in addition to a stellar new CEO,
Lisa Su.

Is it time for open processors?
Posted Jan 13, 2018 7:20 UTC (Sat) by alison (subscriber, #63752) [Link]

> "you'll *never* see a high end Xeon-class core unless some billionaire
> funds it as a pet project, and keeps investing year after year for the
> greater good."

sed -i -e 's/some billionaire/Huawei/g' and the plan starts to sound possible.

Is it time for open processors?
Posted Jan 13, 2018 7:22 UTC (Sat) by alison (subscriber, #63752) [Link]

> "you'll *never* see a high end Xeon-class core unless some billionaire
> funds it as a pet project, and keeps investing year after year for the
> greater good."

sed -i -e 's/some billionaire/Huawei/g' and the plan starts to sound possible.

Is it time for open processors?
Posted Jan 21, 2018 9:38 UTC (Sun) by lkcl (guest, #60496) [Link]

well, by accident i have encountered a potential solution, there. a couple of months ago i
contacted the head of the shakti team in india, and was surprised that he was extremely
enthusiastic to hear from me. whilst extremely busy with an experimental 20nm low-power tape-
out, he did have time to communicate that he had basically been given UNLIMITED resources by
the Indian Government to, and i quote, "Piss All Over ARM And Intel".

due to the sheer volume of the market in india he is being taken seriously by various companies
who have offered him FREE access to tools, FREE access to top-end foundries for experimental
(MVP) samples at 20nm, 28nm and 40nm (one of each), and he in turn has offered the open
hardware and free software community ACCESS to that opportunity.

so all the costs normally associated with getting a processor out the door are GONE.

how d'ya like them apples? :)

http://rhombus-tech.net/riscv/shakti/m_class/

Is it time for open processors?
Posted Jan 9, 2018 15:29 UTC (Tue) by joib (subscriber, #8541) [Link]

> Meanwhile, for low-end applications, there is a compressed instruction-stream format intended to
reduce both memory and energy needs.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

27 of 36

FWIW, to nitpick, this isn't specifically for low-end applications.

In fact, one of the stated reasons why the compressed extension is an extension and not part of the
base ISA is that for the lowest of the low end, the extra complexity in the decoder might not be
worth it.

Is it time for open processors?
Posted Jan 9, 2018 15:51 UTC (Tue) by ken (subscriber, #625) [Link]

Does there exist even a a single out of order open implementation of a CPU?

Is it time for open processors?
Posted Jan 9, 2018 16:07 UTC (Tue) by mtaht (✭ supporter ✭, #11087) [Link]

https://github.com/ucb-bar/riscv-boom is an OOO risc-v core.

Building a risc-v core is almost as simple as typing make, btw, after you install the java/scala
/chisel dependencies. You'd need a supported FPGA board (the Zynq series is good) and a few
proprietary tools to finalize and write the code, and your cpus will grind for hours or days
compiling it all, but that's it.

Ironically, once you do all that, you now have a co-processor living in the much-the-same
physical memory space as the main processor, with all the security headaches that entails.

Is it time for open processors?
Posted Jan 9, 2018 17:19 UTC (Tue) by ejr (subscriber, #51652) [Link]

The RISC-V folks have silicon as well. And that chip uses an in-order RV32I for very
effective, state-of-the-art power management. The relevant publications are on either Krste's or
Bora's pages.

Is it time for open processors?
Posted Jan 9, 2018 20:39 UTC (Tue) by aleXXX (subscriber, #2742) [Link]

This is written in Scala ? I expected VHDL or something...
How do you describe hardware using a more or less normal programming language ?

Is it time for open processors?
Posted Jan 9, 2018 21:43 UTC (Tue) by nybble41 (subscriber, #55106) [Link]

> How do you describe hardware using a more or less normal programming language ?

By using an "embedded Domain-Specific Language" library (in this case, Chisel[1]) which
generates Verilog when the Scala program is run, similar to CλaSH for Haskell[2] or
MyHDL for Python[3]. What these all have in common is that they allow you to use your
language of choice as a preprocessor or "template engine" to generate low-level HDL from
relatively high-level descriptions.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

28 of 36

[1] https://chisel.eecs.berkeley.edu/
[2] http://www.clash-lang.org/
[3] http://www.myhdl.org/

Is it time for open processors?
Posted Jan 9, 2018 22:26 UTC (Tue) by mtaht (✭ supporter ✭, #11087) [Link]

Chisel is one of the few bright spots in hardware construction languages to date,
especially as it has been used to build real processors, and comes with an increasingly
large library of common chip components. SystemC has grown in popularity too (no open
source implementation, however). Underneath it all, verilog and VHDL are better than in
the 80s, but still a crufty mess that you are lucky to get something that works 1 time in 10.
A lot of parameterizing is adhoc and driven by scripts. Extensive validation and
simulation is needed of the result.

Open sourced verilog designs are like open sourcing the buggy, uncommented, assembly
language version of the high level program compiled with -O3.

I am partial to asynchronous circuits (stuff without a central clock is lower power, doesn't
need explicit power management, and emits less noise, good for sensitive radios).
The http://www.async.caltech.edu/Pubs/PDF/chpasync2012.pdf chp design language and
compiler were open sourced a ways back (and is somewhere on github I think but so far
can't find it). We've seen a few interesting new chips built around async logic recently in
the AI space.

Is it time for open processors?
Posted Jan 11, 2018 15:48 UTC (Thu) by kpfleming (subscriber, #23250) [Link]

There's this too: an asynchronous DSP for media processing workloads. Vastly lower
power consumption.

http://www.octasic.com/product/oct2224w/

Is it time for open processors?
Posted Jan 10, 2018 3:07 UTC (Wed) by pabs (subscriber, #43278) [Link]

There are open tools for FPGA synthesis too:

https://symbiflow.github.io/

More FPGA links here:

https://wiki.debian.org/FPGA

Is it time for open processors?
Posted Jan 10, 2018 7:58 UTC (Wed) by michaeljt (subscriber, #39183) [Link]

Doesn't an open source CPU on an FPGA just shift the closed source part down? I might be

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

29 of 36

wrong, as I don't know much about FPGAs. And the Zynq series seem to have a (presumably
closed-source) ARM inside them - does that replace part of what would other be done in
programmable logic?

Is it time for open processors?
Posted Jan 10, 2018 16:47 UTC (Wed) by somlo (subscriber, #92421) [Link]

> Doesn't an open source CPU on an FPGA just shift the closed source part down?

True, but the closed part is just a large grid of mostly identical configurable logic blocks
(CLBs) with a programmable interconnect that builds your hardware design more or less
like on a nano-scale "breadboard". As such, there should be much less magic in those closed
bits than there would be in a whole closed ASIC.

> And the Zynq series seem to have a (presumably closed-source) ARM inside them

That's a hybrid ASIC/FPGA, where they added a pre-optimized-in-silicon "hard IP core" for
applications that frequently require an ARM chip to free up generic CLBs for other uses.
Not interesting/useful if one's goal is to have an open CPU design running on the FPGA.
Ultimately, one can simply choose to ignore the closed hard IP core(s) and just utilize the
generic CLBs for everything.

Is it time for open processors?
Posted Jan 10, 2018 23:07 UTC (Wed) by mtaht (✭ supporter ✭, #11087) [Link]

I mentioned the Zynq series with the arm processor in them because they are an easier
way for programmers to get into futzing with an FPGA and their related toolchains, with a
lot of fairly cheap boards out there with decent linux support.

It's a lot easier to poke at problems in a FPGA assist when you already have a working
processor on-board.

Pure FPGA work requires you reach for the logic analyzer immediately.

Is it time for open processors?
Posted Jan 12, 2018 12:56 UTC (Fri) by mtaht (✭ supporter ✭, #11087) [Link]

boom v2: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-20...

Is it time for open processors?
Posted Jan 9, 2018 16:07 UTC (Tue) by jebba (✭ supporter ✭, #4439) [Link]

Berkeley Out-of-Order Machine (BOOM), RISC-V:

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-20...

Is it time for open processors?
Posted Jan 9, 2018 17:13 UTC (Tue) by palmer (subscriber, #84061) [Link]

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

30 of 36

Well, I certainly hope it is :)

Is it time for open processors?
Posted Jan 9, 2018 18:43 UTC (Tue) by joib (subscriber, #8541) [Link]

There was recently this article about a 17-year old high school student (!) doing his own integrated
circuits in his parents garage: https://spectrum.ieee.org/semiconductors/devices/the-high... His plan
is apparently to recreate the Intel 4004, which isn't that far off from a 6502 in terms of complexity
(IIRC around 2k vs. 3.5k transistors). So, open source C64 here we come!!111

The remaining problem, to port Linux, a desktop environment, and firefox.. :-/

Is it time for open processors?
Posted Jan 9, 2018 18:51 UTC (Tue) by joib (subscriber, #8541) [Link]

I forgot to mention, in the RISC-V world there is the "Micro-riscy" from the pulp project
(http://www.pulp-platform.org/) that comes in at 11.6 kGE (so roughly 45k transistors in CMOS)
which I would guess is out of reach for a garage non-cleanroom fab like said high school student
has.

Is it time for open processors?
Posted Jan 15, 2018 13:23 UTC (Mon) by gtg (subscriber, #84695) [Link]

You mean a bit like this guy? www.megaprocessor.com ;-)

Is it time for open processors?
Posted Jan 15, 2018 20:00 UTC (Mon) by joib (subscriber, #8541) [Link]

Wow! That's, uh, quite cool! :) Thanks for the link.

Is it time for open processors?
Posted Jan 16, 2018 16:26 UTC (Tue) by nix (subscriber, #2304) [Link]

Actually it probably generates quite a lot of heat. Its power draw is going to be... high. :)

Is it time for open processors?
Posted Jan 9, 2018 18:57 UTC (Tue) by excors (subscriber, #95769) [Link]

> RISC-V is indeed not vulnerable to [Meltdown and Spectre] by virtue of not performing any
speculative memory accesses.

Is that true? Surely it depends on the details of any particular implementation of the RISC-V ISA,
and they could choose to do speculative memory accesses, or could check access permissions
slightly too late in their pipeline, just like implementations of x86 and of ARM.

The post from RISC-V only says that the Rocket processor and all "announced RISC-V silicon" are
not vulnerable, which is very different to saying "RISC-V is not vulnerable". BOOM sounds like it
might be vulnerable to Spectre.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

31 of 36

Is it time for open processors?
Posted Jan 9, 2018 19:05 UTC (Tue) by joib (subscriber, #8541) [Link]

While Meltdown and Spectre are fascinating and on everybodys minds right now (and Spectre-style
attacks will likely be with us for a long time), the vast majority of vulnerabilities are still "normal"
software ones such as buffer overflows.

Speaking of hardware, if we aren't rewriting everything in Rust or some other memory safe
language, one way to make plain C safer would be to use hardware-enforced bounds checking such
as the CHERI project (https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/), which adds
hardware support for fat pointers that can be used as capabilities (for a quick
overview, https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201...).

Of course, such an approach suffers from a chicken-and-egg problem; if mainstream architectures
aren't supporting it, people won't port software for it either.. *sigh*

Is it time for open processors?
Posted Jan 9, 2018 22:30 UTC (Tue) by ballombe (subscriber, #9523) [Link]

I do not know if we need an open processor, but we need a processor with separate kernel/user
address space, as sparc and s390 do.

Is it time for open processors?
Posted Jan 9, 2018 22:42 UTC (Tue) by taintedbit (subscriber, #108080) [Link]

As a bit of a digression, printers (of the inkjet and laser variety, not the 3D variety) also seem like
they would benefit from a successful open-source hardware project.

Printers are notorious for taking control away from and acting hostile towards their owners and
users (e.g., DRM embedded in consumables, buggy proprietary software packages, invisible
tracking dots, remotely exploitable security flaws, and more). Additionally, although I am not an
electronics expert, it seems plausible to me that someone could build an open-source printer from a
kit in their home.

Every few years I do a few quick searches on the topic, and although a few incomplete projects
have come and gone, I have not yet seen any lasting, comprehensive, and accessible open printer
project. The main reason for this seems to be a combination of fears about patents, laws against
reverse engineering, lack of demand (which I find hard to believe), and unexpected technical
complexity. Hopefully I have simply missed the existence of such a project, but if not, I hope that
the current discussions about open-source hardware might inspire some people with the necessary
expertise, both technical and legal, to investigate the subject.

Is it time for open processors?
Posted Jan 10, 2018 0:06 UTC (Wed) by pabs (subscriber, #43278) [Link]

Speaking of which, the GNU origin story involves printer software. Does anyone know if it was
printer drivers or software running on the printer itself?

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

32 of 36

Is it time for open processors?
Posted Jan 10, 2018 1:15 UTC (Wed) by pizza (subscriber, #46) [Link]

I don't see it happening, for a simple reason -- the "open source" printers will be competing with
commercial printers that are already sold at or below cost thanks to cutthroat competition, to say
nothing of the secondhand market for the better-made stuff.

(And I say this as someone who writes FOSS printer drivers...)

Is it time for open processors?
Posted Jan 10, 2018 2:23 UTC (Wed) by karkhaz (subscriber, #99844) [Link]

Printers are sold below cost because the ink is sold at extortionate prices. Anybody with any
sense would invest in a printer that was priced the other way round, i.e. a more expensive
printer that uses non-locked-in and presumably cheaper consumables.

Is it time for open processors?
Posted Jan 10, 2018 2:33 UTC (Wed) by rahulsundaram (subscriber, #21946) [Link]

>Anybody with any sense would invest in a printer that was priced the other way round, i.e.
a more expensive printer that uses non-locked-in and presumably cheaper consumables.

That really depends on how often you print. Cheap printer and expensive ink is perfectly
fine if you print occasionally and like the convenience of a printer of home but don't print
often enough for the running cost of ink to be a problem.

Is it time for open processors?
Posted Jan 10, 2018 7:52 UTC (Wed) by michaeljt (subscriber, #39183) [Link]

> Cheap printer and expensive ink is perfectly fine if you print occasionally and like the
convenience of a printer of home but don't print often enough for the running cost of ink
to be a problem.

I believe that inkjet printer nozzles can (could?) be destroyed by dried out ink if they are
used too infrequently. Might be wrong though.

Is it time for open processors?
Posted Jan 10, 2018 16:48 UTC (Wed) by nybble41 (subscriber, #55106) [Link]

> I believe that inkjet printer nozzles can (could?) be destroyed by dried out ink if they
are used too infrequently.

That has been my experience. I only have occasional need for hardcopies (a few times a
year—tax forms and the like, and one-off projects), and eventually switched to an HP
Color LaserJet CM1312nfi at home after observing that I was replacing ink cartridges
roughly every other print job due to the ink drying out. The laser was more expensive
up front—and replacement toner isn't cheap either—but since toner doesn't expire
nearly as quickly as ink I can actually use the entire cartridge, drastically reducing my

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

33 of 36

cost-per-page. I've had my laser printer for nearly a decade now and only had to replace
the black toner once. As a bonus, the quality is higher for text and diagrams, and it even
manages passable photos.

Is it time for open processors?
Posted Jan 11, 2018 2:55 UTC (Thu) by JanC_ (subscriber, #34940) [Link]

I switched to a monochrome laser for the same reason, as pretty much everything I
printed didn't really _need_ any colours (and those aren't really all that more
expensive than inkjets nowadays).

Is it time for open processors?
Posted Jan 17, 2018 15:28 UTC (Wed) by mstone_ (subscriber, #66309) [Link]

Yup, I had my old laserjet 4L for something close to 20 years with only a few toner
cartridge replacements. Finally broke down and replaced with a color laser when it
got too hard to find a replacement cartridge & parts. Tried an inkjet for a while,
basically needed a new ink cartridge every time I printed, and that gets really
expensive really fast. The inkjet had beautiful quality for pictures, and the ability to
do full bleed output (hard on a laser), but I don't generally need display-quality
pictures "right now", so outsourcing that rare need is a no-brainer.

Is it time for open processors?
Posted Jan 10, 2018 16:08 UTC (Wed) by khim (subscriber, #9252) [Link]

You assume people are rational. They are not. And, worse, producers tend to be rational
while final consumers are not (because irrational makers go bankrupt while irrational
consumers don't).

Thus we have what we have.

Is it time for open processors?
Posted Jan 18, 2018 16:39 UTC (Thu) by massimiliano (subscriber, #3048) [Link]

You assume people are rational. They are not. And, worse, producers tend to be rational
while final consumers are not (because irrational makers go bankrupt while irrational
consumers don't).

Thus we have what we have.

Now, this should go into the "quotes" section!

Programmable hardware
Posted Jan 10, 2018 3:57 UTC (Wed) by songmaster (subscriber, #1748) [Link]

Given the availability of really big high-speed FPGA chips today it surprises me that we don’t hear
about them being used as the basis for an open CPU design (and I’m not talking about those chips
that already have an ARM or similar core built into them, that isn’t the point of this idea). I

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

34 of 36

understand that they aren’t going to be as fast as a custom-developed chip, but raw chip speeds have
been going up much more slowly in recent years and the ability to reprogram the hardware ought to
make for some interesting ideas.

I could see multiple CPUs on different chips and each programmed or optimized for a different
workload or part of the problem — that one is currently running Python bytecode, there’s a JVM
over here with a couple of cores, and the security processor over there is doing TLS and SSH. Of
course the result is going to need an OS that is decidedly not SMP or even big.LITTLE. Any takers?

Programmable hardware
Posted Jan 10, 2018 16:53 UTC (Wed) by somlo (subscriber, #92421) [Link]

IIRC there's a partial port of Fedora to RISC-V, and there's even a way to run it on an FPGA
board using a Xilinx Artix7 chip: https://fedoraproject.org/wiki/Architectures/RISC-V

What's missing right now is a way to build the FPGA bitstream from Verilog (or Chisel) sources
using completely open tool chains, although there's some work in progress to address that
(see https://symbiflow.github.io/ mentioned in an earlier comment).

Programmable hardware
Posted Jan 10, 2018 22:55 UTC (Wed) by brouhaha (subscriber, #1698) [Link]

Soft-core processors in an FPGA are about two orders of magnitude slower than the fastest
single-core x86 performance. Soft-core processors are great for some things, but replacing
general-purpose processors is for the most part not one of them.

Soft-core processors are mostly useful if you're going to have an FPGA anyhow, for some other
reason, and can throw in a low-ish performance processor little or no extra hardware cost.

As a hobby I've developed some 8-bit soft core processors, including one compatible with the
RCA CDP1802, which was the first 8-bit CMOS single-chip microprocessor, circa 1976 (famous
for use in the COSMAC ELF microcomputer). On recent FPGAs, my 1802 core runs at least 70
times the maximum instruction execution rate of the original, but that's with 40 years of hardware
advancement.

Is it time for open processors?
Posted Jan 10, 2018 7:13 UTC (Wed) by sampablokuper (subscriber, #53150) [Link]

No mention of LowRISC?

Must watch by bunnie on open hardware
Posted Jan 10, 2018 13:25 UTC (Wed) by guerby (subscriber, #108731) [Link]

IMHO a very good tour of remaining issues around open hardware processors by bunnie :

Keynote Address: Impedance Matching Expectations Between RISC-V and the Open Hardware
Community
blog : https://blog.hackster.io/death-of-moores-law-makes-open-h...

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

35 of 36

video : https://www.youtube.com/watch?v=zXwy65d_tu8
slides : https://riscv.org/wp-content/uploads/2017/05/Wed1100-impe...
author blog : https://www.bunniestudios.com/

Is it time for open processors?
Posted Jan 15, 2018 20:38 UTC (Mon) by metasequoia (subscriber, #119065) [Link]

Since a processor would be an international non-profit effort, a standing problem comes up - no
mechanisms exist which can protect the rights of people, or FOSS and its 'gift to everybody' in what
now amounts to an intentionally amoral supranational legislative space where corporate rights have
been elevated above those of nations, and people and their rights and interests are intentionally
absent, in order to enforce a lock down that allows only one possible future for the planet, one
where everything is owned and nothing shared, a corporate centric world view so instnctively
wrong to most people that its been hidden from sight while what amounts to a global oligarchy
works feverishly to lock it into place irreversibly in as many ways as possible.

To carve demonstrably bad, undemocratic policy in stone forever, basically. This seems to me like a
kind of madness.

There may also be current secret law, involving hardware, which if it is the case, I suspect would be
because these agreements likely - in order to give all nation states equal rights - when dealing with
multinational corporations, the agreements likely require some back door mechanisms they can all
be given equally.

This is I suspect the case.. In these deals, there is no standing for any representatives of the whole
worlds people as people are only instantiated through the country they are the market of.

See the problem?

We, the people, no longer have representation in this sphere. Its become "We the corporations". This
is not in the abstract, its been done physically. Sure, we have governments, but their primary
responsibility increasingly, because people were never made aware of the fact that this was being
done, are to act on behalf of their corporations. In particular the newer agreements being promoted
clearly are a sort of second enclosure transferring everything of value to corporations. For example,
creation of any new public services of all kinds seem to be prohibited "except services supplied in
the exercise of governmental authority": "a service supplied in the exercise of governmental
authority' means any service which is supplied neither on a commercial basis, nor in competition
with one or more service suppliers." So almost no public services end up qualifying for protection.

There is an urgent need for new structures to represent people in this sphere.

THE MARKET DEMANDS OPEN COMPUTER PROCESSORS

36 of 36

