
Journal of Logic, Language and Information (2006) 15: 251–271 C© Springer 2006

DOI: 10.1007/s10849-005-9012-8

A Modal Interpretation of the Logic of Interrogation

RANI NELKEN and CHUNG-CHIEH SHAN
Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge,

MA 02138

E-mails: nelken@eecs.harvard.edu; ccshan@post.harvard.edu

(Received 18 October 2005; in final form 28 October 2005)

Abstract. We propose a novel interpretation of natural-language questions using a modal predicate

logic of knowledge. Our approach brings standard model-theoretic and proof-theoretic techniques

from modal logic to bear on questions. Using the former, we show that our interpretation preserves

Groenendijk and Stokhof’s answerhood relation, yet allows an extensional interpretation. Using the

latter, we get a sound and complete proof procedure for the logic for free. Our approach is more

expressive; for example, it easily treats complex questions with operators that scope over questions. We

suggest a semantic criterion that restricts what natural-language questions can express. We integrate

and generalize much previous work on the semantics of questions, including Beck and Sharvit’s

families of subquestions, non-exhaustive questions, and multi-party conversations.
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1. Introduction

Several different approaches exist in the linguistic and logical literature for modeling

natural-language questions. In linguistics, it has been popular to follow Hamblin

(1973) and Karttunen (1977) (hereafter HK) in taking a question to denote its set

of partial answers or partial true answers. For instance, for the wh-question Who’s

quitting?, this set would contain answers such as Alice is quitting and Alice and

Bob are quitting. Groenendijk and Stokhof (1984, 1997; hereafter GS) propose a

more parsimonious approach, in which the answers in the set are required to be

complete and mutually exclusive–in other words, a partition of possible worlds in

the space of epistemic possibilities. For the same wh-question, these answers would

be Nobody is quitting, Just Alice is quitting, Only Alice and Bob are quitting, and so

on. Such classical approaches are firmly intensional, which causes complications

when they try to handle more complex questions. By contrast, Nelken and Francez

(2000, 2002; hereafter NF) propose an extensional interpretation: The meaning of

the same question is r (“resolved”) if it is known for every person in the domain

whether he or she is quitting. Otherwise, it is ur (“unresolved”).

Here, we propose a new interpretation of questions in modal predicate logic,

presented in Section 2. The idea of interpreting questions using modal logic goes
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back to Hintikka (1976) and Åqvist (1965), who interpret a question as a request for

knowledge: “bring it about that I know whether . . . ”. Such a request is composed

of an imperative part and an epistemic part. Focusing on the latter, we interpret a

question as the knowledge condition required to answer it completely. We reduce

the epistemic part of the meaning of both yes-no questions and wh-questions to

statements of the form “it is known whether . . . ” or “it is in the common ground

that . . . ”. For instance, a yes-no question such as Is Alice quitting? means “it is

known that Alice is quitting or it is known that Alice is not quitting”. It may seem

that such approaches cannot deal with embedded questions, but we address this

problem in Section 3.

The bulk of this paper bridges previous semantics of questions and combines

their advantages. As GS emphasize, crucial to any semantics of questions are two

entailment relations involving questions: answerhood, the relation between a ques-

tion and its complete answers, and question entailment. Section 4 and Appendix

A show that our modal interpretation exactly captures these entailments. Thus,

Monz’s (2003) suggestion for basing practical question answering on logical in-

ference relations can be straightforwardly implemented using existing inference

procedures for modal logic. Like NF’s theory, our approach enjoys an extensional

semantics, detailed in Section 5 and Appendix B.

Section 6 explains how our logic internalizes questions and is more expres-

sive. In particular, it straightforwardly lets various operators scope over questions,

which is notoriously difficult for previous theories. However, the logic is in a sense

too expressive, allowing question meanings that natural-language questions cannot

express. Section 7 proposes a simple semantic criterion to rule out such spurious

questions: we hypothesize that a question must license an answer in GS’s sense.

Following GS, we start with a strongly-exhaustive interpretation of questions. In

Section 8 we use knowledge conditions to also encode weakly- and non-exhaustive

questions, as HK’s sets of answers can, and as Beck and Rullmann (1999) argue

we must. This encoding lets us generalize families of subquestions (Beck and

Sharvit, 2002; Sharvit and Beck, 2001) to weakly- and non-exhaustive questions,

in Section 9. Finally, Section 10 extends Groenendijk’s game of interrogation

(1999) to more than two players.

2. From Knowing to Asking

The basic ingredients of our proposal are found in the reader’s favorite first-order

modal logic of knowledge. Given a necessity operator �, which can be read as “it

is known that” or “it is in the common ground that”, assertions are formulae of the

form �φ. For example, for it to be asserted that Alice is quitting is for it to be in

the common ground that Alice is quitting: �Qa.

We impose only minimal constraints on the logic, summarized in Table I. First,

we require a normal modality to be able to reason with the logic. To use the logic as
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Table I. Constraints we require of our logic.

Constraint Syntactically Semantically

Normal modality Necessitation rule and K axiom Possible worlds and accessibility

Knowledge must be true T axiom Accessibility is reflexive

Barcan both ways Barcan formula and its converse Constant domain

See Footnote 1 for the axioms named in this table.

an epistemic one, we require that knowledge of a proposition implies its truth. To

simplify reasoning, we further assume that the domain remains the same as in the

real world, even when contemplating epistemic alternatives. For concreteness, we

assume that the underlying logic is S5, which is characterized by further validating

that accessibility is transitive (the 4 axiom) and symmetric (the B axiom).1

For any formula φ, we write ?φ as shorthand for �φ ∨ �¬φ. Formulae of this

form encode yes-no questions. For example, to the question Is Alice quitting? we

assign the semantics ?Qa, or �Qa ∨ �¬Qa. The intuition behind this assignment

is that to know whether Alice is quitting is to either know that she is quitting or

know that she is not. Thus, we directly encode the meaning of the question as its

knowledge condition—what it takes to know a complete answer to the question.

The intensional semantics of such formulae is the standard Kripke semantics. The

meaning of �Qa ∨ �¬Qa is that all the possible worlds seen from the current

one agree on Qa. In other words, Qa is either uniformly true in all these worlds, or

uniformly false in all of them. Similarly, we encode wh-questions as formulae of

the form ?�x .φ, which is shorthand for ∀�x .?φ, where �x is zero or more variables.2

For example, we take the meaning of Who is quitting? to be ∀x .�Qx ∨�¬Qx . The

intuition here is that to know who is quitting is to know for each person whether

he or she is quitting. The intensional semantics is that all the worlds seen from the

current world agree on the extension of Q—the set of people who quit must be the

same in all the worlds. This approach is strongly exhaustive as in GS’s work; we

refine this assumption in Section 8.

3. Question Denotations

The main linguistic objection to reducing questions to knowledge conditions is that

it seems to take knowledge as an integral part of the question meaning. This would

seem to preclude treating embedding verbs such as wonder and depend on. More-

over, it does not seem to distinguish between the speech acts of asking a question

and asserting knowledge of the question’s answer.

1 For completeness, here is the list of axioms: Necessitation If φ is provable with no assumption,

then so is �φ, K �(φ → ψ) → �φ → �ψ , The T axiom �φ → φ, Barcan both ways
(�∀x .φ) ↔ (∀x .�φ), The 4 axiom �φ → ��φ, The B axiom φ → �¬�¬φ.

2 The case of zero variables reduces to ?φ.
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To address this objection, it is important to note that the modality � in a formula

such as �Qa∨�¬Qa refers to the knowledge state of no particular agent or group.

Neither does � quantify universally over all possible worlds in intensional logic.

Rather, � is just an abstract modality. By slight abuse of notation, it is perhaps

more accurate to say that the matrix question Is Alice quitting? and the embedded

question whether Alice is quitting both denote the abstraction

λ � · � Qa ∨ � ¬Qa, (1)

in which � is bound by a lambda operator. We shall shortly explain the added λ�

model-theoretically. We posit that questions enter semantic composition as such

a function. To finalize a sentence meaning, this function must be applied to some

epistemic modality, in other words, to some knowledge state. Performing a matrix

question applies the abstraction to the implicit conversational common ground

�CG. Likewise, a question-embedding verb such as know or wonder applies the

same abstraction to other knowledge states. Thus, if to wonder is to want to know,

then wonder denotes

λq · λx · ‘x wants that q(�x )’, (2)

where �x is the knowledge state of x in an alternative world, and q(�x ) is the

proposition that x knows (a complete answer to) q.

What does it mean for a function to take a modality as argument? A modality

is specified by its accessibility relation (of type 〈s, 〈s, t〉〉), so a question meaning

could simply take an accessibility relation as argument. Questions would then be

of type 〈〈s, 〈s, t〉〉, 〈s, t〉〉: functions from accessibility relations to propositions.

But our constraints on the accessibility relation can simplify this type. Because

accessibility is transitive and symmetric in S5, and the truth value of a formula only

depends on worlds at least indirectly accessible, we can simplify the argument to

questions from being an accessibility relation to being merely a set of accessible

worlds. Questions are then of type 〈〈s, t〉, 〈s, t〉〉, so that q(W )(w) holds just in case

the set of worlds W agree on a complete answer to q at the world w. In other words,

q(W )(w) is true if knowing that the actual world is in W entails knowing a complete

answer to q at w. Because accessibility is reflexive in S5, q(W )(w) need only be

defined when W contains w.

4. Entailment Relations

GS describe two entailment relations involving questions that any semantics of

questions should provide.

1. Answerhood is a relation between an indicative sentence and a question. An

indicative is said to entail a question if the indicative completely answers the

question.
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Table II. Entailment examples.

Entailment In words

Qa ∧ ¬Qb |=?x .Qx Alice is quitting and Bob isn’t quitting answers
Who is quitting?

(This example assumes that the domain consists solely

of a and b.)

∃x Qx �|=?x .Qx Someone is quitting does not answer
Who is quitting?

|=?(R ∨ ¬R) Is it either raining or not raining? is trivially
answered

?x .Qx |=?x .¬Qx . Who is quitting? entails Who is not quitting?

?x .Qx ∧ Mx �|=?x .¬Qx Who is quitting and moving away? does not entail
Who is not quitting?

2. Interrogative entailment is a relation between two questions. One question is

said to entail another if knowing a complete answer to the first question entails

knowing a complete answer to the second question.

Our theory reduces both these relations, as well as ordinary indicative entailment,

to modal consequence, defined standardly as follows.

DEFINITION 1 (Modal consequence). ψ |=m φ iff for any Kripke structure M,

with a reflexive accessibility relation, if |=m
M ψ , then |=m

M φ.

That is, if ψ holds in every world, then φ holds in every world.

Table II gives some easily verifiable examples to illustrate that our approach

matches GS’s empirical adequacy. In fact, we formally prove in Appendix A that

our answerhood relation exactly preserves the exhaustive answerhood relation of

GS. The result is quite general, and requires only that frames be reflexive. This is a

welcome result, since it shows that we can achieve GS’s explanatory power using a

much simpler semantics (in fact, an extensional one, as described in Section 5). The

intuition behind the proof is as follows. On the GS approach, a question partitions

the logical space of possible worlds into equivalence classes, each corresponding

to a possible answer to the question. On our approach, the (knowledge condition

of the) question holds in each possible world w iff all the worlds accessible from

w (that is, all the worlds compatible with the agent’s knowledge) agree on the

answer. In other words, to assign a question the value “true” is to entertain only

epistemic possibilities that agree on the answer to the question. Thus, for a question

to be resolved is for our accessibility relation to respect GS’s partition boundaries,

yielding answerhood preservation.

By assigning truth values (of modal formulae) to questions, we gain the

simplicity of NF’s analysis: a uniform consequence relation that subsumes

indicative entailment, answerhood, and interrogative entailment. We also gain
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expressive power with which to account for more complex questions, as explained

in Section 6. Another advantage of our modal perspective is that it bridges the

what of question answering, which linguistic semantics is concerned with, to the

how of question answering, which practical systems must embody (Monz, 2003):

established computational techniques of modal logic can now be used to reason

about questions. Previous approaches to implementing GS’s logic (Bos and Gabsdil,

2000) restricted their attention to a weakened variant of GS’s entailment relations.

In particular, we can apply inference procedures for modal logic to answerhood and

interrogative entailment, extending ten Cate and Shan’s (2002) question-answering

algorithm for GS’s partition semantics to any question meanings encoded as knowl-

edge conditions. In fact, we can directly use Cerrito and Cialdea Mayer’s (2001)

proof procedure for first-order S4 logic. The procedure is sound and complete—

given a question, it generates only and all answers. However, it does not always

terminate—in some cases, there is an infinite number of possible answers, and no

answer is most informative.

5. Extensional Semantics

Both HK and GS take a question to mean its answers. Because answers are proposi-

tions, such an approach inherently attributes the added complexity of intensionality

to interrogative sentences, but not to indicative sentences. While there may be good

reasons to adopt such an asymmetry, it is less clear what level of intensionality is

actually necessary to interpret questions. To examine this issue, we propose to try

to construct an extensional semantics of questions, and see how far one can take it.

Even if intensionality turns out to be ultimately necessary, we will better understand

what phenomena in the interpretation of questions really overstep the extensional

boundary and drive the need for intensionality.

NF propose an explicitly extensional interpretation of questions that assigns

to each question one of 5 rather than 2 truth values, organized in an algebraic

structure called a bilattice. Unfortunately, this interpretation is not quite empirically

adequate. For instance, it does not capture the third example in Table II, repeated

below, without further assumptions (Nelken and Francez, 2002).

|= ?(R ∨ ¬R). (3)

By contrast, our modal approach offers a new extensional interpretation of questions

that preserves GS’s entailment relations, including (3) and the rest of Table II.

Recall that propositional modal logic has the finite-model property: if a collection

of formulae has a model, then it has a model with a finite number of possible worlds.

This useful property does not hold in general for first-order modal (predicate) logic,

but we show in Appendix B that it does hold for implications among first-order

modal formulae that encode questions. In fact, two worlds in the model are enough:

any entailment between questions is satisfiable iff it is satisfiable with two worlds,

and falsifiable iff it is falsifiable with two worlds.
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This result provides a novel extensional interpretation that exactly preserves

the entailment relations of GS. We can easily simulate a two-world structure by

a non–modal first-order model that assigns to each atomic formula one of 4 truth

values: {FF, TF, FT, TT}. The truth value of a more complex formula is computed

by applying the regular truth tables of the logical operators pointwise; for example,

the disjunction of TF and FT is TT. The ? operator checks whether the two worlds

agree: it maps TT and FF to TT; and TF and FT to FF.

To illustrate this simulation, let us consider (3) once again. Since the logical

operators operate pointwise, R ∨¬R has the value TT regardless of the value of R.

Thus ?(R ∨ ¬R) is TT, so the entailment holds in this 4-value logic, as desired.

This novel extensional interpretation nevertheless has an intensional flavor, in

that the 4 truth values simply encode 2 possible worlds. This flavor raises the more

philosophical issue of what constitutes an extensional semantics. On one hand, if

we forget about possible worlds and just use a non-classical handful of truth values,

is our semantics then extensional? On the other hand, if we encode more possible

worlds, say 20 instead of 2, yielding an astronomical number of truth values, is the

interpretation then intensional? Is intensionality a binary distinction, or a matter of

degree?

6. Internalized Questions

Because we let questions denote their knowledge conditions, which are just modal

formulae, they can further combine with other formulae. In particular, our ? operator

is internalized: as in NF’s but not GS’s analysis, it can apply anywhere in a question

meaning, not just at the top level or under some top-level universal quantifiers. We

can thus handle the following constructions using standard logical connectives.

Conjunction: Do you have a license and who (else) has one? (? L∧ ?x .Lx).

Disjunction: What’s your social security number? Or what’s your mother’s maiden

name? (?x .Sx ∨ x .Mx). Is it getting warmer? Or is it just me? Whereas con-

junction is straightforward for GS, they get disjunction only by resorting to

higher-order type-shifting from partitions to sets of sets of partitions, yielding a

highly complex object.

There is some debate in the literature over whether disjoined questions are avail-

able in natural language. Whereas GS and NF accept them, Szabolcsi (1997)

claims that they are unavailable. We offer a refined prediction in Section 7.

Conditional: If it’s raining, who has an umbrella? (R → ?x .U x). These questions

are unavailable for GS.

As the formula indicates, the conditional questions we consider here—where

an implication leads from an indicative to a question—are those that can be

completely answered by falsifying the antecedent in the common ground. For
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example, the question above can be completely answered by announcing it’s not

raining. On one hand, when the antecedent is hard to falsify (for example, when

it is next week’s weather that is under discussion), a conditional question such as

R → ?x .U x is hard to distinguish from a question whose body is a conditional,

such as ?x .R → U x (Who, if it rains next week, will have an umbrella?). On the

other hand, when the antecedent is manifestly true (If I’m sick, why did you take

me on a 5-mile hike?),the knowledge condition is equivalent to the unconditional

question (Why did you take me on a 5-mile hike?), though obviously there is at

least a pragmatic difference between the two questions.

Universal quantification Who recommends each candidate? (∀y.Cy → ?x .Rxy).

In previous theories, because questions are not propositions, they are difficult to

quantify over. For instance, Karttunen uses double negation to get these readings.

Since conditional questions are unavailable for GS, so is universal quantification

over conditional questions.

Also, by universally quantifying over conditional questions, we can express

the contrast between de dicto and de re readings of which-questions (Groenendijk

and Stokhof, 1984), as in Alice just discovered which spies are quitting. The de

dicto reading here (∀x .Sx → ?Qx) neither entails nor is entailed by the de re

reading (∀x .?(Sx ∧ Qx)).

Whereas HK and GS struggle to get these representations if they get them at all,

our logic allows them straightforwardly. However, nothing in the expressivity of

our logic bars other combinations that, while logically possible, do not correspond

to natural-language questions. For instance, while a question-denoting formula can

be negated to express that its knowledge condition does not hold, natural language

does not recognize such a construction (¬?R : ∗Not is it raining?). We turn to these

cases in the next section.

7. Licensing Answers

Groenendijk (1999) uses interrogative entailment to define a semantic notion of

licensing.

DEFINITION 2. (Licensing). A question Q licenses an answer A just in case

Q |= ?A.

For Q to license A does not require that A completely answer Q. That is, Q |=?A

may hold even when �A |= Q does not. Rather, licensing means that if Q is fully

resolved then the question “whether A” is also resolved.

To illustrate this difference, consider a maybe answer to a yes/no question such

as It is raining? Clearly, ⋄ R �|= ?R, but yes/no questions do license maybe answers

us ?R |= ?⋄ R on transitive frames.
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As explained in Section 6, our logical language of questions is more expressive

than GS’s. Using GS’s notion of licensing, we can circumscribe this expressive

power to predict what question meanings are available in natural language. We

propose the following criterion:

CLAIM 1 . A question is acceptable in natural language only if it licenses a non-

trivial answer.

More formally, if Q is a question, then we require that Q |=?A for some (non-

modal) proposition A that is neither tautologically true nor tautologically false. We

must exclude such trivial answers because every question entails ?⊤ and ?⊥. The

following cases illustrate this claim.

Yes-no questions: The question ?A is acceptable for any non-trivial indicative A,

since we always have ?A |= ?A. In other words, the question whether A always

licenses the answer that A.

Simple wh-questions: The question ?�x .P �x is acceptable for any non-trivial prop-

erty or relation P, since we always have ?�x .P �x |= ?P�a, where �a is a sequence

of individuals.

Conjunction: Let Q be a conjunction of questions, say Q = Q1 ∧ Q2, such that at

least one of the conjuncts is acceptable, say Q1. Then there exists some answer

A such that Q1 |= ?A. It is easy to verify that Q1 ∧ Q2 |= ?A, so Q is also

acceptable.

Disjunction: As mentioned in Section 6, there is some controversy as to whether

disjoined questions are acceptable. Our licensing criterion makes a novel predic-

tion: disjoined questions are usually unacceptable but occasionally acceptable.

For example, to know a complete answer to Did you just come out of a swim-

ming pool, or is it raining? (?S∨?R) is to either know a complete answer to Did

you just come out of a swimming pool? (?S) or know a complete answer to Is

it raining? (?R). If it is in the common ground that exactly one of S and R is

true—for example, if the listener is clearly drenched, the only conceivable ways

for the listener to be drenched are S and R, and they are mutually exclusive—then

the disjunction forms an acceptable question, because it licenses such non-trivial

answers as S and R. Formally, we have that S ↔ ¬R, ?S∨?R |=?A, for A = S

and A = R.

Similarly for Would you like coffee or would you like tea?, which we can

formalize as ?C∨?T . At least on the surface, this sentence seems to be a (perfectly

acceptable) disjunction of two questions. Szabolcsi claims that, in an apparently

disjoined question, the second question cancels the first, but that claim cannot

be maintained here, since one can still answer the first question.

Note the strong contextual presupposition that exactly one of the two choices

is true (C ↔ ¬T ). Where does this presupposition come from? It is easy to verify
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that, with the assumption C ↔ ¬T , the question does license the non–trivial

answers C and T.

Knowing a complete answer to one of two questions usually does not entail

knowing a complete answer to any particular yes-no question, so questions usu-

ally cannot be disjoined. For example, even though Who is coming to the party?

and Is it raining? are both acceptable questions, we predict correctly that their

disjunction is not.

Negation: Not knowing a complete answer to one question never entails knowing a

complete answer to another question. Hence we predict, correctly, that questions

can never be negated.

Quantification: The question Who recommends each candidate? can be formalized

as ∀y.Cy → ?x .Rxy. For this question meaning to license a non-trivial answer,

there must be at least one individual, say Alice (a), whose candidacy is in the

common ground. Assuming that Ca, the question then licenses the answer Raa.

Conversely, if nobody’s candidacy is in the common ground, then our proposal

correctly rules out the question.

In this way, our licensing criterion allows a universally quantified question

when at least one individual is commonly known to be in the domain of quan-

tification, but other quantifiers such as most and no cannot take scope over a

question. For example, the question Who recommends most candidates? cannot

be answered by specifying the recommenders of most candidates in a so-called

pair-list reading.

Presuppositions: Presuppositions project out of questions. For example, the ques-

tion Did you stop smoking? presupposes that you smoked, just as its indicative

counterparts You stopped smoking and You did not stop smoking do. Similarly,

Which candidates stopped smoking? presupposes that at least some of the can-

didates smoked. Our account expects these question presuppositions, because

the licensing criterion places the question in the antecedent part of an entail-

ment, where presuppositions project out. For instance, we must know for each

candidate whether they stopped smoking, and hence that they smoked in the

past.

In proposing this constraint on natural-language questions, we diverge from pre-

vious methodology. Previous approaches start with a less expressive base, then

add mechanisms to handle more complex constructions available in natural lan-

guage. For other, unacceptable operations, these theories can just remain silent,

and the issue why such operations are barred never arises. While formally ade-

quate, such an approach cannot justify or even contemplate why certain boolean

operators are acceptable with questions whereas others are not. By contrast,

we do not delegate the range of available constructions to the syntax of the

logic. Instead, we consider the full range of operations, then explain why cer-

tain combinations are impossible by proposing a semantic criterion that has to
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do not with the logical apparatus, but with the empirical properties of natural

language.

8. Exhaustive Questions Versus Complete Answers

An assertion φ is a complete answer to a question ψ just in case φ entails ψ .

For example, asserting that it is raining and nobody is quitting (R ∧ ∀x .¬Qx)

completely answers the question who is quitting (?x .Qx).

Completeness relates answers to questions. Exhaustivity is a separate notion that

applies to wh-questions only.

1. The encoding of wh-questions in Section 2—as formulae of the form ∀�x . ?φ—

is strongly exhaustive in that it universally quantifies over �x . To know who is

quitting in this sense is to know, for each person x, either that x is quitting or

that x is not.

2. By contrast, to know who is quitting in the weakly exhaustive sense is to know,

for each person x who is quitting, that x is quitting: ∀x .Qx → �Qx , or more

generally ∀�x .φ → �φ.

3. Finally, a question such as Where can I get gas?, in an appropriately desperate

situation, is non-exhaustive and would be represented by existential quantifica-

tion: ∃x .�Gx . Any assertion of a gas station’s location qualifies as a complete

answer.

Any strongly-exhaustive question ∀�x .?φ can be recast as the weakly-exhaustive

question

∀�x · ∀y · (y = φ) → �(y = φ) (4)

(in which the variable y ranges over truth values), because both questions are equiv-

alent to

∀�x .(φ → �φ) ∧ (¬φ → �¬φ). (5)

We can characterize the difference between strongly-, weakly-, and non-

exhaustive questions semantically, as follows. All questions on our account are

monotonic: it never hurts to know more (that is, to entertain fewer epistemic pos-

sibilities).

CLAIM 2 (Monotonic). If q is a question, then q(W1)(w) implies q(W2)(w) when-

ever W1 ⊇ W2.

Exhaustive questions are furthermore additive: a disjunction of complete answers

is still a complete answer.
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CLAIM 3 (Additive). If q is an exhaustive question, then q(W1)(w) ∧ q(W2)(w)

implies q(W1 ∪ W2)(w) (similarly for infinite unions).

Non-exhaustive questions are not additive: Where can I get gas ? is completely an-

swered by both in Central Square and in Inman Square, but not by in either Central

Square or Inman Square; I’m not sure which. Strongly-exhaustive questions are not

only additive but also constant across worlds. That is, q(W )(w1) = q(W )(w2), if q

is strongly exhaustive, for w1, w2 ∈ W .

Let q be an additive question denotation. Following Heim’s terminology (1994),

we define the answer1 of q at a world w, written A1
w(q), to be the union of all

world-sets W satisfying q(W )(w). The additivity of q ensures that the answer1 is

itself an answer, in that q(A1
w(q))(w) is true. Because q is monotonic, q(W )(w)

is true just in case W ⊆ A1
w(q). Thus q is determined by A1

w(q) at each world w,

and we are tempted to further simplify the semantic type of exhaustive questions

from 〈〈s, t〉, 〈s, t〉〉 to 〈s, 〈s, t〉〉: given a world w, return the answer1 A1
w(q) at w.

However, this simplification only works for exhaustive questions. Hence, Beck and

Rullmann (1999; Section 7.1) argue that a question must sometimes denote a set

of answer propositions, rather than always denoting its answer1 proposition. By

contrast, we let strongly-, weakly-, and non-exhaustive questions uniformly denote

the same type 〈〈s, t〉, 〈s, t〉〉.
Note that weakly-and even non-exhaustive questions are allowed by the licensing

criterion of Section 7. For instance, though ∃x · � Gx does not entail ?Ga for

any domain element a, it still entails the existential question Can I get gas (some

where)?—?∃x .Gx .

Van Rooy (2003) views the difference between exhaustive and non-exhaustive

questions not as ambiguity but rather as underspecification.3 He assigns to ques-

tions a uniform meaning regardless of whether they are exhaustive or not, namely

a family of (potentially overlapping) sets of possible worlds. These sets depend

on the optimal answers to the asker’s decision problem that motivates asking the

question in the first place. This approach has the advantage of unifying questions

of different exhaustivity levels. However, it does so at the price of introducing ad-

ditional notions having to do with the speaker’s hidden mental state (such as the

underlying decision problem and the optimal utility of answers). Our knowledge

conditions unify different exhaustivity levels in a simpler way. In fact, knowledge

conditions can be seen as encoding the utility of an answer as a binary value: either

useful (that is, entailing the knowledge condition) or not.

It is technically possible to reformulate van Rooy’s approach in our terms by

dividing a subset of the domain (consisting of those elements that are relevant

according to van Rooy) into a family S of possibly overlapping subsets. Intuitively,

these are the subsets of equal utility for the asker. The meaning of a question then

remains universal quantification, but with an added existential quantification over

3 We thank an anonymous reviewer for directing our attention to this point.
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the subsets in S . For instance, Where can I get gas? becomes ∃D ∈ S .∀x ∈
D.�Gx . The exhaustive case is when S consists of a single set: the domain. The

non-exhaustive case is when S is a full partition of the domain into singletons.

Presumably, S can be determined by the same methods as van Rooy determines

his division of the set of possible worlds.

9. Plurality of Questions

As explained above, we interpret a wh-question by universally quantifying over in-

dividual questions. This strategy is tightly related to Beck and Sharvit’s work (2002;

Sharvit and Beck, 2001) on families of subquestions for explaining quantificational

variability effects. On Beck and Sharvit’s analysis, sentences such as

(6) Alice mostly knows who is quitting.

(7) With few exceptions, Alice knows who is quitting.

quantify over a contextually salient family of subquestions of the question who

is quitting. A family of subquestions is simply a set of questions, satisfying

some conditions detailed below. For example, the family S of subquestions might

be

(8) {is Alice quitting, is Bob quitting, is Carol quitting,. . . },

and the sentences (6) and (7) mean

(9) For most questions s in S, Alice knows s.

(10) For all but few questions s in S, Alice knows s.

Beck and Sharvit argue that these sentences quantify over not persons or propo-

sitions but questions. Leaving these arguments aside, we show here how our modal

perspective expresses their proposal, so as to generalize it to weakly- and non-

exhaustive questions as introduced in Section 8.

It is tempting to view the wh-question formula ?�x .φ as explicitly encoding

the set of yes-no questions {?φ [�d/�x] |�d ∈ Dn}, where D is the domain and �x
consists of n variables. Indeed, this set is a family of subquestions, used in the

simplest cases of quantificational variability, such as those above. But as Beck and

Sharvit show, this set sometimes differs from the contextually salient family of

subquestions. To allow for these cases, they propose that any set S of questions can

be used as the family of subquestions of a question q, subject to the following three

criteria.

1. Answering every question in S would answer q as well.
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2. Every question s in S is a subquestion of q. Formally, if s and q both partition

the set of possible worlds into classes, then some class of s is disjoint from some

class of q. In other words, there are two possible worlds ws and wq such that the

partition in s containing ws is disjoint from the partition in q containing wq .4

Thus s is a subquestion of q iff q is a subquestion of s.

3. No proper subset of S satisfies both criteria above.

The second criterion above mentions partitions: Beck and Sharvit only consider

strongly exhaustive questions, which they follow GS in treating as partitions of the

set of possible worlds. It turns out that we can apply the family-of-subquestions

approach not only to strongly-exhaustive questions but also to weakly- and some-

times non-exhaustive questions. However, since partitions cannot model weakly-

and non-exhaustive questions, we must reformulate the second criterion using only

knowledge conditions. Instead of referring to the partitions containing ws and wq ,

we can look at an answer to s in ws and an answer to q in wq . These answers must

be mutually exclusive. That is, for S to be a family of subquestions of q requires

the following three criteria.

1. The conjunction of all questions in S entails q.

2. Every question s in S is a subquestion of q, in the sense that there exist two

possible worlds ws and wq , such that any two propositions Ws and Wq are

mutually exclusive whenever they answer s and q at ws and wq , respectively.

In other words, for s and q to be subquestions of each other is for there to be

worlds ws and wq , such that any two world-sets Ws and Wq are disjoint whenever

s (Ws)(ws) and q(Wq)(wq) are both true.5

3. No proper subset of S satisfies these two criteria.

This reformulation has the virtue of being applicable even when the partition

semantics of questions is not.

Despite this reformulation, non-exhaustive questions cannot ordinarily be in-

terpreted as a family of subquestions, as reflected by their distinct (existential)

representation. For example, if Alice knows the exact location of even a single gas

station, then Alice knows exactly where to get gas. If Alice runs out of gas while

driving, and she asks Bob whether he knows where to get gas, it would be odd for

Bob to answer With few exceptions, I do, even if Bob knows the exact locations of

all but a few gas stations in the area. This oddity is because no discrete family of

subquestions is contextually salient. Bob could say I mostly do, not to mean that he

knows the locations of most gas stations nearby, but to mean that he has somewhat

4 If, to the contrary, every partition of s intersects every partition of q , then s and q are unrelated

questions.
5 Recall that, if q is a question, W is a set of worlds, and w is a world, then q(W )(w) holds iff

knowing that the actual world is in W entails knowing the complete answer to q at w.
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vague recollections of how to navigate to a certain gas station nearby. The relevant

family of subquestions here is how to navigate at each step.

10. Multi-party Conversations

Because the partition theory of questions embeds into our semantics, we can recast

Groenendijk’s game of interrogation (1999) in our terms. In Groenendijk’s original

game, an interrogator and a witness take turns asking questions and asserting

answers.

1. The interrogator must not ask superfluous questions. For example, having asked

Who is quitting?, the interrogator must not ask Who is not quitting?, because of

the fourth example in Table II above.

2. The witness must only assert licensed answers. For example, having been asked

Who is quitting and moving away?, the witness must not assert Alice is not

quitting. (The witness must also avoid assertions that are redundant, meaning

entailed by the common ground, or incredible, meaning inconsistent with the

common ground.)

From the modal perspective, we can extend this game from one interrogator and

one witness to multiple, overlapping groups of participants.

Groenendijk keeps track of the knowledge and issues in the common ground

using a context C, which is a partial equivalence relation over possible worlds,

or equivalently, a partition of a subset of the set of possible worlds. A world ap-

pears in the context just in case it is not yet ruled out by the knowledge state in

the common ground; two worlds are related by the context just in case it is not

yet under discussion which one is real. In Groenendijk’s game, the only knowl-

edge state and knowledge conditions relevant to felicity in the conversation is

the common ground between the interrogator and the witness. We can general-

ize this to knowledge state and knowledge conditions among overlapping groups

by keeping track of one context per group. That is, for every group of partic-

ipants G, we keep track of a context CG for that group, still a partial equiv-

alence relation over worlds. Entailment among contexts respects containment

among groups; that is, if G ′ ⊆ G, then CG ′ ⊆ CG throughout our generalized

game.

Groenendijk’s interrogator updates the context by removing equivalences; his

witness updates the contexts by removing worlds. For a question q (denoting a

partition of worlds) to be non-superfluous is for the context C to not entail q.

For an assertion φ (denoting a set of worlds) to be licensed is for the context

C to entail ?φ, where ?φ is the binary partition of worlds formed by φ and its

complement, ¬φ. In our generalization, the group G of participants in the room

can change from move to move. A question still removes equivalences, and an
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answer still removes worlds, but from every context CG ′ for subgroups G ′ of G. (It

is easy to check that this update procedure preserves the invariant that entailment

among contexts respects containment among groups.) Each question q must not be

redundant: CG better not entail q. (Because of the invariant, then, it never hurts to

ask a question in a bigger group. For example, the same question may be asked

again after a participant enters, but not leaves, the room.) Each answer φ must be

licensed: CG better entail ?φ. (Because of the invariant, it never hurts to assert

an answer in a smaller group—except the assertion may then be redundant or

incredible.)

The generalization just described of Groenendijk’s game may seem straightfor-

ward at first glance, and to the extent that it is straightforward, the link that this

paper makes between question meanings and knowledge conditions is successful.

However, we must point out two caveats that call for future work.

First and foremost, neither Groenendijk’s nor our game deals with questions

that are not strongly exhaustive. The problem lies with the licensing condition

for answers: according to Groenendijk, the witness can assert an answer φ just in

case the context entails ?φ. But if the question ψ under discussion is weakly–, or

non-exhaustive, then even a complete answer φ to ψ (that is, so that �φ |= ψ)

is unlicensed (that is, ψ �|= ?φ)! This wrongly prevents any answer to a question

such as Where can I get gas?. Hence this relevance criterion must be revised for

non-strongly-exhaustive questions. Invoking the notion of subquestions, perhaps

one could err on the side of permissiveness and allow any answer φ to be asserted

as long as �φ completely answers any subquestion in any family of subquestions

of ψ .

Second, as we consider more complex games of interrogation, it becomes less

clear that our formal criteria for redundancy and relevance really correspond to

intuition. In what sense do participants in these games know what issues are un-

der discussion, and work towards the goal of resolving these issues? Not in any

sense so far formally related to logics for epistemic actions. Grounding games of

interrogation such as ours, in logics for epistemic actions such as Baltag et al.’s

(1999), would help model subtleties such as the following. Suppose that Alice

asks Bob and Carol whether it is raining, then Bob leaves the room. Can Carol

still tell Alice that it is raining? This assertion does not further the goal of com-

mon knowledge among Alice, Bob, and Carol, yet our generalized game above

allows it.
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Appendix A: Answerhood Preservation

In this appendix, we provide the proof that answerhood is preserved for reflexive

frames. Recall that according to GS, an indicative ψ , in a structure M, denotes a

set of possible worlds, denoted by [[ψ]]M . An interrogative, ϕ, denotes a partition

relative to a structure M. In each possible world it denotes a class of that partition,

denoted [[ϕ]]M,w. GS define φ to be an answer to ϕ if the meaning of ψ is wholly

included in some class of the partition.

DEFINITION 3. (GS exhaustive answerhood). For indicative ψ and interrogative

ϕ, ψ |=e ϕ if and only if for every structure M, [[ψ]]M ⊆ [[ϕ]]M,w for some w.

Using this definition, and Definition 1 we can now state the answerhood preser-

vation theorem.

THEOREM 1. For indicative ψ and interrogative ϕ, ψ |=e ϕ iff ψ |=m ϕ

To prove the theorem, we relate the structures used for the two kinds of semantics.

We view modal-based structures as “sub-structures” of partition-based structures.

For a Kripke structure M and formula φ, we would like to associate a subset

W
′ ⊆ W with φ. If φ is indicative, we take some set of worlds in which it is

true. If φ is interrogative, we take a subset of one of the equivalence classes in the

partition it induces.

DEFINITION 4. (φ-set). Let M be a Kripke structure. Let φ be a formula. A

non–empty set of possible worlds W
′ ⊆ W is called a φ-set iff:

– If φ is indicative then W
′ ⊆ [[φ]]M

– If φ is interrogative then W
′ ⊆ [[φ]]M,w for some w ∈ W

Now, given a formula φ and Kripke structure M, take a φ-set, W
′, throw on any

reflexive accessibility relation, and view the result as a new Kripke structure M ′.

DEFINITION 5 (Induced Kripke structure). Let M = 〈W , R, D, a, V 〉 be a

Kripke structure. Let W
′ ⊆ W , and let R′ be a reflexive accessibility re-

lation on W
′. The Kripke structure induced by M, W

′ and R′ is M ′ =
〈W

′, R′, D, a, V |W ′〉

Interestingly enough, M ′ satisfies φ’s translation:

LEMMA 1. Let M = 〈W , R, D, a, V 〉 be a Kripke structure. Let φ be a formula.

Let W
′ be a φ-set, and choose R′ ⊆ W

′ × W
′ to be a reflexive relation on W

′.

If M ′ is the Kripke structure induced by M, W
′ and R′, then |=m

M ′ φ
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Proof.

– If φ is indicative, then φ is true in all the worlds of [[φ]]M . Hence, M ′ only

contains worlds in which φ is true.

– If φ = ?�x .η is interrogative, then by our construction, W
′ is a subset of one

of the classes in the partition induced by φ. Hence, the extension of η is the

same in all possible worlds w ∈ W
′. Thus for any tuple of domain elements

�d over D of the same arity as �x, η is assigned the same truth value in all of

the worlds in W
′, under the assignment of �x to �d. Consequently, by definition,

|=m
M ′ ∀�x (�η ∨ �¬η).

For the other direction, let M be a Kripke structure with reflexive accessibility

|=m
M ϕ. Choose any possible world w ∈ W , and define Rw =def {w′|wRw′} as the

set of possible worlds accessible from w. Rw is a φ-set.

LEMMA 2. If |=m
M φ, then Rw is a φ-set for any w.

Proof. First, note that for any w, Rw is non-empty since R is reflexive.

– If φ is indicative, then all the worlds in W satisfy φ.

– If φ is interrogative, let φ = ?�x .η = (?�x .η) = ∀�x .(�η ∨ �¬η). Assume |=m
M φ.

Let �d be a tuple of domain elements of the same arity as �x . Under the assignment

a[�d/�x], �η ∨ �¬η is satisfied by M and w. Therefore one of the two disjuncts

is satisfied by M and w. Hence for all w′ ∈ Rw, νw′(η) = νw(η), under this

assignment. Thus the extension of η is the same over all Rw. Clearly, Rw ⊆
[[φ]]M,w. Hence, Rw is a φ-set.

Based on these two lemmata, we can now prove the theorem:

Proof.

– Assume ψ |=e ϕ. Let M = 〈W , R, D, a, V 〉 be a Kripke structure with reflexive

accessibility such that |=m
M ψ . We must show that |=m

M ϕ. By Lemma 2, Rw is

a ψ-set for any w ∈ W . In other words, Rw ⊆ [[ψ]]M for any w ∈ W . Thus,

R ⊆ [[ψ]]M×[[ψ]]M . By definition of exhaustive answerhood, [[ψ]]M ⊆ [[ϕ]]M,w′

for some w′ ∈ W . Hence, R ⊆ [[ϕ]]M,w′ × [[ϕ]]M,w′ for some w′ ∈ W . By

Lemma 1, |=m
M ϕ.

– For the other direction, assume ψ |=m ϕ. Let M be a Kripke structure.6 If

[[ψ]]M = ∅, then we are done, since exhaustive answerhood holds trivially.

Otherwise, choose W
′ = [[ψ]]M , and choose R′ = W

′ × W
′. Let M ′ be the

Kripke structure induced by M, W
′ and R′. By Lemma 1, |=m

M ′ ψ . Since ψ |=m ϕ

6 No assumptions are made on the accessibility relation of M .
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we have |=m
M ′, ϕ. By Lemma 2, R′w is a ϕ-set for any w ∈ W

′. In other words,

R′w ⊆ [[ϕ]]M,w. Now choose some w ∈ W
′. Since R′w = W

′ = [[ψ]]M , we

have [[ψ]]M ⊆ [[ϕ]]M,w

Appendix B: Finite Models in First-Order Modal Logic

In this appendix we consider how many possible worlds are needed to sat-

isfy or falsify a satisfiable or falsifiable formula φ in first-order modal (predi-

cate) logic. In particular, we bound the number of worlds needed for question

entailments.

DEFINITION 6 (Modal footprint). The two columns of dual, mutually recursive

equations below define the positive modal footprint |φ|+ and negative modal foot-

print |φ|− for certain modal formulae φ.

|φ|+ = 0 if φ is atomic |φ|− = 0 i f φ is atomic

|¬φ|+ = |φ|− |¬φ|− = |φ|+
|φ| ∧ ψ |+ = |φ|+ + |ψ |+ |φ ∨ ψ |− = |φ|− + |ψ |−
|φ ∨ ψ |+ = max(|φ|+, |φ|+) |φ ∧ ψ |− = max(|φ|−, |φ|−)

| ⋄ φ|+ = 1 + |φ|+ |�φ|− = 1 + |φ|−
|�φ|+ = 0 if |φ|+ = 0 | ⋄ φ|− = 0 if |φ|− = 0

|∃x .φ|+ = |φ|+ |∀x .φ|− = |φ|−
|∀x .φ|+ = 0 if |φ|+ = 0 |∃x .φ|− = 0 if |φ|− = 0

Clearly, |φ|+ = |¬φ|− and |¬φ|+ = |φ|− for all φ.

THEOREM 2. Suppose that M is a Kripke structure, and w is a world in M.

– If M, w |= φ for some formula φ for which |φ|+ is defined, then there exists a

set of at most |φ|+ worlds in M, such that removing every world in M except w

and these worlds gives a reduced Kripke structure M ′ such that M ′, w |= φ.

– If M, w �|= φ for some formula φ for which |φ|− is defined, then there exists a

set of at most |φ|− world in M such that removing every world in M except w

and these worlds gives a reduced Kripke structure M ′ such that M ′, w �|= φ.

Proof. By mutual structural induction on φ.

For our purposes, it is important that removing worlds from a Kripke struc-

ture preserves the reflexivity, transitivity, and symmetry of its accessibility

relation.

Suppose now that φ = φ1 → φ2, where φ1 and φ2 are both conjunctions of

formulae of the form ?�x . ψ . Then |φ|+ and |φ|− are both at most 2. Therefore,

given a Kripke structure M satisfying the constraints in Table I, and a world w in
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M where φ is satisfied (or falsified), we can use the theorem above to reduce M to

w and at most two other worlds while still satisfying (respectively, falsifying) φ.

In the context of Section 5, this result tells us that GS’s question semantics has

an extensional interpretation using 3 possible worlds, that is, 23 truth values. In

fact, because every atomic formula in φ is buried under a modal �, we can identify

the current world w with one of the two other worlds and still satisfy (respectively,

falsify) φ. In other words, GS’s question semantics has an extensional interpretation

using 2 possible worlds, that is, 22 truth values as described in Section 5.
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