

Economics/Emerging Business Opportunities in Energy Storage

McKinsey & Company

Dickon Pinner October 23, 2008

This report contains information that is confidential and proprietary to McKinsey & Company, Inc., and is solely for the use of McKinsey & Company, Inc., personnel. No part of it may be used, circulated, quoted, or reproduced for distribution outside McKinsey & Company, Inc. If you are not the intended recipient of this report, you are hereby notified that the use, circulation, quoting, or reproducing of this report is strictly prohibited and may be unlawful.

Overview

Why is it different this time?

Have we seen this before?

What barriers remain?

The Product Manager's dilemma

2

4

Who wins?

1. Why is it different this time?

Four major discontinuities are driving interest in storage

Natural gas storage: Price and value transparency of gas storage provided users with greater optionality

Storage played a critical role in the development of the unregulated natural gas market...

Source: McKinsey Analysis; DOE, FERC Order 636, 1992, "Energy Storage" - Richard Baxter

Battery performance, cost and sales have come a long way

High upfront cost for EV batteries will be a barrier to adoption which, in turn, creates business opportunities

Cost breakdown for VW Golf equivalent in 2013 U.S. Dollars

* In addition, ICE sales taxes (e.g., Israel, Denmark) or EV subsidies (e.g., California) reduce upfront price differential for consumer

Source: Rocky Mountain Institute, McKinsey analysis

Innovation cycles can be very long

Source: Energy Velocity

Depending on the segment, storage costs still need to come down significantly

Annual cost for 8 hour backup

* Valve regulated lead acid batteries (sealed) Source: Sandia National Laboratory

US government funding is low, but private sector is very active

Government funding was ~1% invested thus far in 2008 by VC investors

Source: US Department of Energy; Energy Independence and Security Act 2007

We are also not completely done with the safety issue yet

Fire damaged PHEV Prius...

Fire damaged Li-ion cells...

"... the driver opened the windows and began to pull over. When the windows were opened, a significant amount of smoke was pulled forward to the driver's area. The driver **exited the vehicle and noted a fire at the right side in the rear (cargo) compartment of the vehicle which eventually consumed the vehicle**..."

Source: Press clippings

Adoption cycles can be long... depending on the segment

Source: McKinsey analysis; Energy Velocity; IIT

Value from storage – reduced losses from power interruptions

Power lost due to interruption Megawatts (2007) Customers impacted Thousands

Source: EIA

Value from storage – better power generation asset utilization

Capacity utilization of US coal plants

Percent utilization, number

Source: EIA; Platts

Most market size estimates assume relatively little near-term penetration, suggesting there is significant upside U.S. UTILITY MARKET 2020

* Assuming \$500/kWh; 2 hours/day renewable storage; does not include cost of energy storage replacement (if needed) Source: McKinsey analysis

Successful adoption of individual technologies depends on alignment across three dimensions and overcoming agency issues

1. Functionality... broadly defined, e.g.,

- Power density (specific, volumetric)
- Energy density (specific, volumetric)
- Discharge rate
- Shelf life
- # of cycles
- Form factor
- Noise
- Safety
- Thermal range
- etc...

2. Cost... also broadly defined across title lifecycle

- Capex
- Opex
- End of life

3. Product lifecycle & switching costs

Each end user segment has very different requirements across these dimensions

Example end user segment

NOT EXHAUSTIVE

Functionality – need to match choice of technology to segment functionality requirements

✓ Central importance

	•	Ŭ				
Metric of functionality	Utilities (Frequency response)	Stationary power (UPS)	Portable Power (Forklift)	Micro Power (Med. device)	Consumer electronics (Smartphone)	Transportation (EV)
Power ρ^*			\checkmark			
Energy ρ		\checkmark				
Spec. power*			\checkmark			
Spec. energy					\checkmark	\checkmark
Discharge rat	e 🗸					
Shelf life		\checkmark		\checkmark		
# of cycles	\checkmark		\checkmark			\checkmark
Form factor				\checkmark	\checkmark	
Capital costs						\checkmark
O&M costs	\checkmark	\checkmark				
Noise		\checkmark				
Safety				\checkmark		\checkmark
Thermal rang	е					

* Density is per unit volume; specificity is per unit mass Source: McKinsey

...and combine to create the map of technologies functionally suited to various applications

Storage power requirements for electric power utility applications

Source: McKinsey; Sandia National Laboratory; ESA

...and combine to create the map of technologies functionally suited to various applications

Storage power requirements for electric power utility applications

Source: McKinsey; Sandia National Laboratory; ESA

Cost is also very important

Revenue requirement

Cents/kWh

Estimated cost per kWh (cell-level) Dollars

And product lifecycle must also be considered ...

Source: McKinsey analysis; Lux reserach

EXAMPLE FROM AUTOMOTIVE INDUSTRY

... as does regulation ...

- Of more than 20 automotive technologies examined, only 4 were adopted in less than a decade
- The most rapidly adopted technologies were motivated by safety or by regulatory pressure (e.g., radial tires (fuel efficiency, safety) or fuel injection (fuel efficiency)

Source: McKinsey analysis

Energy storage market (conservatively) should grow to \$60-70 billion by 2012

20072012

Source: Lux Research

EV EXAMPLE

What's at stake? Large transfers of value across several industries

44.375

Cost breakdown of a hypothetical EV powered by a Li-ion battery

Dollars per unit

Other	524
Separator	350
Graphite	543
Electrolyte	1,190
Cathode	2,487
Cell costs	5,094
Module & casing	2,150
Variable costs	7,244
Fixed costs	4,631
Total battery	11,875
Motor	2,500
Rest of vehicle	30,000
Total car	44,375

"Displaced" revenue due to use of a Li-ion battery Dollars per unit

infrastructure players

PHEVs and low-range BEVs with lower total cost of ownership, especially in Europe due to high fuel taxes

* Model analyses first 10 years of ownership (16 year life of car) for standard segment car, e.g., VW Golf

** Depreciation modeled separately from vehicle

*** Improved ICE with fuel reduction packages 1 + 2

Source: McKinsey analysis

EV EXAMPLE

Abatement potential and costs of technologies (1/2)

"Well-to-wheel" emissions

STANDARD SEGMENT EUROPE, 2030

g CO₂/km (real, not driving cycle)

	269	(-15%)	(-23%)	(-22%)				
Well-to-tank	39	227 36	208 27*	210 31	- 51%	- 50%	-62%	-56%
Tank-to-wheel	230	191	181	179	19	113	102 13 89	119 17 102
-	Gasoline current	Diesel current	CNG current	Gasoline hybrid current	Gasoline optimized	Diesel optimized	CNG optimized	Gasoline hybrid optimized
Investment cost (consumer) EUR	0	650	1,400	1,800	1,950	2,050	3,400	3,750
Payback period (consumer) Years	0	1.0	1.6	4.7	2.2	1.9	2.5	3.3

* Assuming EU Mix for CNG

Source: McKinsey

EV EXAMPLE

Abatement potential and costs of technologies (2/2)

"Well-to-wheel" emissions

g CO₂/km (real, not driving cycle)

* Hydrogen generated using electrolysis**

** Emissions depend on type of electricity used, range shown between nuclear (low emision value) and CNG EU mix (high emission value)

STANDARD SEGMENT EUROPE, 2030

EV EXAMPLE

Tremendous amount of recent activity, e.g., auto OEMs

Chrysler announces several "production intent" electric vehicles including a new Lotus-based pure EV sports car, and a PHEV minivan and Jeep Wrangler

Berkshire Hathaway buys 10% of Chinese electric car-maker BYD and announces partnership with US utility Mid-American Energy to create dealerships and charge stations

build and sell EV version of

Hyundai Getz with 120 km

range in New Zealand

General Motors officially unveils the 2011 Chevy Volt

Renault/Nissan unveils electrified version of renault Megane, Kangoo, and another new all-electric design to be sold in 2012

New alliances between automotive OEMs and utilities

Mitsubishi to partner with Tokyo Electi electric vehicles	ric on new	General Motors teams with 35 U.S. utilities on plug-in cars		
– Green Ca	r Congress	– Wall Street Journal		
Tesla and PG&E partner on "smart charging"	Subaru v evaluate	vill partner with New York Power Authority to the company's R1e electric vehicle		
– AutoblogGreen		– Green Car Congress		
E ON Volkswagen and GAVA team i	n a project ai	ming to demonstrate the use of electricity generated		

E.ON, Volkswagen and **GAYA** team in a project aiming to demonstrate the use of electricity generate by renewable energy such as wind and solar for powering up PHEV's under real-time conditions

- EV World

RWE and **Daimler** teaming up for electric car project in Berlin

– Financial Times

Toyota and **EDF** are starting trials of a range-extended plug-in hybrid in the UK

– Channel 4

Source: Press clippings

Alliances between automotive OEMs and battery manufacturers

* Integrated into AESC in 2008

Source: Company data; Sanyo Electric; automotive technology

EV EXAMPLE

Governments are announcing targets / plans to support EV adoption

Country		Year
\$	Israel	2011
	Denmark	~ 2011
	Portugal	2011
	Spain	2014
* * * * *	Australia	2012
	California	_

Source: Press search, Time magazine, Haaretz, Wired, msnbc.com, Renault press releases, autoobserver.com, ENN, New York Times, drive.com, The Australian, CNN.com

How will new technology impact "rents" in value chain?

Concluding thoughts

- Storage opportunity is clear, but barriers remain
- Storage is an enabler with multiple benefits to many people; therefore hard to sell
- Regulation could potentially play a role in making value visible to different users
- Storage will enable some huge disruptions.
 - -Will be big winners and losers
 - -New structures and industry leaders will emerge
- Emerging leaders will act now to shape future industry structures